Acta mathematica scientia,Series A ›› 2018, Vol. 38 ›› Issue (5): 911-923.
Previous Articles Next Articles
Received:
2017-09-30
Online:
2018-11-09
Published:
2018-11-09
Supported by:
CLC Number:
Baoyan Sun. Lower Bound of Blow-Up Time for a p-Laplacian Equation with Nonlocal Source[J].Acta mathematica scientia,Series A, 2018, 38(5): 911-923.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Li F C , Xie C H . Global and blow up solutions to a p-Laplacian equation with nonlocal source. Comput Math Appl, 2003, 46 (10/11): 1525- 1533 |
2 |
Niculescu C P , Roventa I . Generalized convexity and the existence of finite time blow-up solutions for an evolutionary problem. Nonlinear Anal, 2012, 75 (1): 270- 277
doi: 10.1016/j.na.2011.08.031 |
3 | Alikakos N D , Evans L C . Continuing of the gradient for weak solutions of a degenerate parabolic equation. J Math Pures Appl, 1983, 62 (3): 253- 268 |
4 |
Zhao J N . Existence and nonexistence of solutions for ut=div(|▽u|p-2▽u) + f(▽u, u, x, t). J Math Anal Appl, 1993, 172 (1): 130- 146
doi: 10.1006/jmaa.1993.1012 |
5 |
Yin J X , Jin C H . Critical extinction and blow-up exponents for fast diffusive p-Laplacian with sources. Math Meth Appl Sci, 2007, 30 (10): 1147- 1167
doi: 10.1002/(ISSN)1099-1476 |
6 |
Fang Z B , Xu X H . Extinction behavior of solutions for the p-Laplacian equations with nonlocal sources. Nonlinear Anal Real World Appl, 2012, 13 (4): 1780- 1789
doi: 10.1016/j.nonrwa.2011.12.008 |
7 |
Yamashita Y , Yokota T . Existence of solutions to some degenerate parabolic equation associated with the p-Laplacian in the critical case. Nonlinear Anal, 2013, 93: 168- 180
doi: 10.1016/j.na.2013.07.035 |
8 |
Qu C Y , Bai X L , Zheng S N . Blow-up versus extinction in a nonlocal p-Laplace equation with Neumann boundary conditions. J Math Anal Appl, 2014, 412 (1): 326- 333
doi: 10.1016/j.jmaa.2013.10.040 |
9 |
Levine H A . Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics:The method of unbounded Fourier coefficients. Math Ann, 1975, 214: 205- 220
doi: 10.1007/BF01352106 |
10 |
Levine H A . The role of critical exponents in blow-up theorems. SIAM Rev, 1990, 32 (2): 262- 288
doi: 10.1137/1032046 |
11 | Bandle C , Brunner H . Blow-up in diffusion equations:A survey. J Comput Appl Math, 1998, 97 (1/2): 3- 22 |
12 | Straughan B . Explosive Instabilities in Mechanics. Berlin: Springer-Verlag, 1998 |
13 |
Payne L E , Schaefer P W . Lower bounds for blow-up time in parabolic problems under Dirichlet conditions. J Math Anal Appl, 2007, 328 (2): 1196- 1205
doi: 10.1016/j.jmaa.2006.06.015 |
14 | Payne L E , Schaefer P W . Lower bounds for blow-up time in parabolic problems under Neumann conditions. Appl Anal, 2006, 85 (10): 1301- 1311 |
15 |
Payne L E , Schaefer P W . Blow-up in parabolic problems under Robin boundary conditions. Appl Anal, 2008, 87 (6): 699- 707
doi: 10.1080/00036810802189662 |
16 |
Payne L E , Philippin G A , Schaefer P W . Bounds for blow-up time in nonlinear parabolic problems. J Math Anal Appl, 2008, 338 (1): 438- 447
doi: 10.1016/j.jmaa.2007.05.022 |
17 |
Payne L E , Philippin G A , Schaefer P W . Blow-up phenomena for some nonlinear parabolic problems. Nonlinear Anal, 2008, 69 (10): 3495- 3502
doi: 10.1016/j.na.2007.09.035 |
18 | Li Y F , Liu Y , Lin C H . Blow-up phenomena for some nonlinear parabolic problems under mixed boundary conditions. Nonlinear Anal Real World Appl, 2010, 11 (15): 3815- 3823 |
19 |
Mu C L , Zeng R , Chen B T . Blow-up phenomena for a doubly degenerate equation with positive initial energy. Nonlinear Anal, 2010, 72 (2): 782- 793
doi: 10.1016/j.na.2009.07.020 |
20 |
Enache C . Blow-up phenomena for a class of quasilinear parabolic problems under Robin boundary condition. Appl Math Lett, 2011, 24 (3): 288- 292
doi: 10.1016/j.aml.2010.10.006 |
21 |
Li F S , Li J L . Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary conditions. J Math Anal Appl, 2012, 385 (2): 1005- 1014
doi: 10.1016/j.jmaa.2011.07.018 |
22 |
Wang N , Song X F , Lv X S . Estimates for the blowup time of a combustion model with nonlocal heat sources. J Math Anal Appl, 2016, 436 (2): 1180- 1195
doi: 10.1016/j.jmaa.2015.12.025 |
23 |
Di H F , Shang Y D , Peng X M . Blow-up phenomena for a pseudo-parabolic equation with variable exponents. Appl Math Lett, 2017, 64: 67- 73
doi: 10.1016/j.aml.2016.08.013 |
24 | Ding J T , Shen X H . Blow-up in p-Laplacian heat equations with nonlinear boundary conditions. Z Angew Math Phys, 2016, 67 (3): 125 |
25 |
Ma L W , Fang Z B . Bolw-up analysis for a reaction-diffusion with weighted nonlocal inner absorptions under nonlinear boundary flux. Nonlinear Anal Real World Appl, 2016, 32: 338- 354
doi: 10.1016/j.nonrwa.2016.05.005 |
26 | Payne L E , Song J C . Lower bounds for blow-up time in a nonlinear parabolic problem. J Math Anal Appl, 2009, 354 (1): 394- 396 |
27 |
Song J C . Lower bounds for the blow-up time in a non-local reaction-diffusion problem. Appl Math Lett, 2011, 24 (5): 793- 796
doi: 10.1016/j.aml.2010.12.042 |
28 |
Liu D M , Mu C L , Xin Q . Lower bounds estimate for the blow-up time of a nonlinear nonlocal porous medium equation. Acta Math Sci, 2012, 32 (3): 1206- 1212
doi: 10.1016/S0252-9602(12)60092-7 |
29 |
Liu Y . Blow-up phenomena for the nonlinear nonlocal porous medium equation under Robin bondary condition. Comput Math Appl, 2013, 66 (10): 2092- 2095
doi: 10.1016/j.camwa.2013.08.024 |
30 |
Talenti G . Best constant in Sobolev inequality. Ann Mat Pura Appl, 1976, 110: 353- 372
doi: 10.1007/BF02418013 |
31 |
Daners D . A Faber-Krahn inequality for Robin problems in any space dimension. Math Ann, 2006, 335 (4): 767- 785
doi: 10.1007/s00208-006-0753-8 |
32 |
Payne L E , Philippin G A , Vernier Piro S . Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, Ⅱ. Nonlinear Anal, 2010, 73 (4): 971- 978
doi: 10.1016/j.na.2010.04.023 |
[1] | Gu Longjiang, Sun Zhiyu, Zeng Xiaoyu. The Existence of Minimizers for a Class of Constrained Variational Problem with Its Concentration Behavior [J]. Acta mathematica scientia,Series A, 2017, 37(3): 510-518. |
[2] | Duan Shuangshuang, Huang Shoujun. Blow up of Periodic Solutions for a Class of Keller-Segel Equations Arising in Biology [J]. Acta mathematica scientia,Series A, 2017, 37(2): 326-341. |
[3] | Geng Jinbo, Yang Zhenzhen, Lai Ning-An. Blow up and Lifespan Estimates for Initial Boundary Value Problem of Semilinear Schrödinger Equations on Half-Life [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1186-1195. |
[4] | Huang Shoujun, Wang Rui. Plane Wave Solutions to the Euler Equations for Chaplygin Gases [J]. Acta mathematica scientia,Series A, 2016, 36(4): 681-689. |
[5] | Wu Yuanze, Wu Tsungfang, Liu Zeng. On the Brézis-Nirenberg Problem with Nonhomogeneous Dirichlet Boundary Conditions [J]. Acta mathematica scientia,Series A, 2015, 35(6): 1025-1043. |
[6] | Lei Qian, Li Ning, Yang Han. Blow Up and Asymptotic Behavior in the Beam Equation [J]. Acta mathematica scientia,Series A, 2015, 35(4): 738-747. |
[7] | Di Huafei, Shang Yadong. Global Existence and Nonexistence of Solutions for A Class of Fourth Order Wave Equation with Nonlinear Damping and Source Terms [J]. Acta mathematica scientia,Series A, 2015, 35(3): 618-633. |
[8] | CHEN Xiang-Ying. Global Existence of Solution of Cauchy Problem for A Generalized IMBq Equation with Weak Damping [J]. Acta mathematica scientia,Series A, 2015, 35(1): 68-82. |
[9] | Gan Zaihui ;Zhang Jian. Standing Waves for a Class of Coupled Nonlinear Klein-Gordon Equations [J]. Acta mathematica scientia,Series A, 2006, 26(4): 559-569. |
[10] | CHEN You-Peng, XIE Chun-Hong. Global Existence and Nonexistence for a Nonlinear Parabolic Equation with a Nonlinear Boundary Condition [J]. Acta mathematica scientia,Series A, 2005, 25(6): 881-889. |
[11] | BANG Da-Heng, HAN Mao-An, WANG Zhi-Cheng. On the Cauchy Problem for a Reaction Diffusion System with Singular Coefficients [J]. Acta mathematica scientia,Series A, 2005, 25(2): 220-229. |
|