Acta mathematica scientia,Series A ›› 2018, Vol. 38 ›› Issue (5): 903-910.
Previous Articles Next Articles
Jun Wang1,Tianlu Wang2,Yanhua Wen1,Xianfeng Zhou1,*()
Received:
2017-06-22
Online:
2018-11-09
Published:
2018-11-09
Contact:
Xianfeng Zhou
E-mail:zhouxf@ahu.edu.cn
Supported by:
CLC Number:
Jun Wang,Tianlu Wang,Yanhua Wen,Xianfeng Zhou. Global Solutions of IVP for N-Dimensional Nonlinear Fractional Differential Equations with Delay[J].Acta mathematica scientia,Series A, 2018, 38(5): 903-910.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Podlubny I . Fractional Differential Equations. New York: Academic Press, 1993 |
2 | Lakshmikantham V , Leela S , Vasundhara Devi J . Theory and Applications of Fractional Differential Equations. Amsterdan: Elsevier Science, 2006 |
3 | Diethelm K . The Analysis of Fractional Differential Equations. Heideberg: Springer, 2010 |
4 | Kilbas A A , Srivastava Hari M , Trujillo J J . Theory and Applications of Fractional Differential Equations. Amsterdan: Elsevier Science, 2006 |
5 | Zhou Y . Basic Theorem of Fractional Differential Equations. Singapore: World Scientific, 2014 |
6 |
Glockle W G , Nonnenmacher T F . A fractional calculus approach of self-similar protein dynamics. Biophys J, 1995, 68: 46- 53
doi: 10.1016/S0006-3495(95)80157-8 |
7 | Hilfer R . Applications of Fractional Calculus in Physics. Singapore: World Scientific, 2000 |
8 |
Metzler F , Schick W , Kilian H G , Nonnenmacher T F . Relaxation in filled polymers:A fractional calculus approach. J Chen Phys, 1995, 103: 7180- 7186
doi: 10.1063/1.470346 |
9 |
Tarasov V E , Aifantis E C . Non-standard extensions of gradient elasticity:Fractional non-locality, memory and fractality. Commun Nonlinear Sci Numer Simulat, 2015, 22: 197- 227
doi: 10.1016/j.cnsns.2014.10.002 |
10 |
Benchohra M , Henderson J , Ntouyas S K , Ouahab A . Existence results for fractional order functional differential equations with infinite delay. J Math Anal Appl, 2008, 338: 1340- 1350
doi: 10.1016/j.jmaa.2007.06.021 |
11 |
Zhou Y , Jiao F , Li J . Existence and uniqueness for fractional neutral differential equations with infinite delay. Nonlinear Anal, 2009, 71: 3249- 3256
doi: 10.1016/j.na.2009.01.202 |
12 |
Zhou Y , Jiao F , Li J . Existence and uniqueness for p-type fractional neutral differential equations. Nonlinear Anal, 2009, 71: 2724- 2733
doi: 10.1016/j.na.2009.01.105 |
13 |
Agarwal R P , Zhou Y , He Y . Existence of fractional neutral functional differential equations. Comput Math Appl, 2010, 59: 1095- 1100
doi: 10.1016/j.camwa.2009.05.010 |
14 |
Lakshmikantham V . Theory of fractional functional differential equations. Nonlinear Anal, 2008, 69: 3337- 3343
doi: 10.1016/j.na.2007.09.025 |
15 | Jankowski T . Initial value problems for neutral fractional differential equations involving a RiemannLiouvill derivative. Appl Math Comput, 2013, 219 (14): 7772- 7774 |
16 | Wang J , Zhou Y . Existence of mild solutions for fractional delay evolution systems. Appl Math Comput, 2011, 218: 357- 367 |
17 |
Agarwal R , Zhou Y , et al. Fractional functional differential equations with causal operators in Banach spaces Math. Comput Model, 2011, 54: 1440- 1452
doi: 10.1016/j.mcm.2011.04.016 |
18 | Liu Y . Piecewise continuous solutions of initial value problems of singular fractional differential equations with impulse effects. Acta Math Sci, 2016, 3636B (5): 1492- 1508 |
19 | Vinodkumar A , Malar K , et al. Existence, uniqueness and stability of random impulsive fractional differential equations. Acta Math Sci, 2016, 36B (2): 428- 442 |
20 |
Wen Y , Zhou X F , Zhang Z . Lyapunov method for nonlinear fractional differential systems with delay. Nonlinear Dyn, 2015, 82: 1015- 1025
doi: 10.1007/s11071-015-2214-y |
21 |
Liu S , Zhou X F , et al. Stability of fractional nonlinear singular systems and its applications in synchronization of complex dynamical networks. Nonlinear Dyn, 2016, 84: 2377- 2385
doi: 10.1007/s11071-016-2651-2 |
22 |
Liu S , Wu X , et al. Asymptotical stability of Riemann-Liouville fractional nonlinear systems. Nonlinear Dyn, 2016, 86: 65- 71
doi: 10.1007/s11071-016-2872-4 |
23 |
Li M , Wang J . Finite time stability of fractional delay differential equations. Appl Math Lett, 2017, 64: 170- 176
doi: 10.1016/j.aml.2016.09.004 |
24 |
Agarwal R , O'Regan D , et al. Practical stability with respect to initial time difference for Caputo fractional differential equations. Commun Nonlinear Sci Numer Simulat, 2017, 42: 106- 120
doi: 10.1016/j.cnsns.2016.05.005 |
25 | Balachandran K , Govindaraj V , et al. Controllability of fractional damped dynamical systems. Appl Math Comput, 2015, 257: 66- 73 |
26 | Ge F D , Zhou H C , Kou C H . Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique. Appl Math Comput, 2016, 275: 107- 120 |
27 |
Zhou X F , Hu L G , et al. Controllability of a fractional linear time-invariant neutral dynamical system. Appl Math Lett, 2013, 26: 418- 424
doi: 10.1016/j.aml.2012.10.016 |
28 |
Sakthivel R , Ganesh R , et al. Approximate controllability of nonlinear fractional dynamical systems. Commun Nonlinear Sci Numer Simulat, 2013, 18: 3498- 3508
doi: 10.1016/j.cnsns.2013.05.015 |
29 | Ding X . Controllability and optimality of linear time-invariant neutral control systems with different fractional orders. Acta Math Sci, 2015, 35B (5): 1003- 1013 |
30 |
Bhrawy A H , Zaky M A . Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dyn, 2016, 85: 1815- 1823
doi: 10.1007/s11071-016-2797-y |
31 |
Diethelm K , Ford N J , Freed A . A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn, 2002, 29: 3- 22
doi: 10.1023/A:1016592219341 |
32 | Hale J K , Verduyn Lunel Sjocrd M . Introduction to Functional Differential Equations. New York: SpringVerlag, 1993 |
|