Acta mathematica scientia,Series A ›› 2018, Vol. 38 ›› Issue (5): 864-872.

Previous Articles     Next Articles

Lie Derivable Maps on von Neumann Algebras

Lichun Yang(),Runling An*()   

  1. College of Mathematics, Taiyuan University, Taiyuan 030024
  • Received:2017-05-08 Online:2018-11-09 Published:2018-11-09
  • Contact: Runling An E-mail:1344307489@qq.com;runlingan@aliyun.com
  • Supported by:
    the NSFC(11001194);the NSFC(10771157);the International Cooperation Project of Shanxi Province(2014081027-2)

Abstract:

Let ${\cal A}$ be a von Neumann algebra with no central abelian projections, $P\in{\cal A}$ be a projection with $\underline{P}=0$ and $\overline{P}=I$. An additive map $\delta:{\cal A}\rightarrow{\cal A}$ is said to be Lie derivable at $\Omega\in{\cal A}$, if $\delta([A, B])=[\delta(A), B]+[A, \delta(B)]$ for any $A, B\in{\cal A}$ with $AB=\Omega.$ We show that, if $\Omega\in{\cal A}$ such that $P\Omega=\Omega$, then $\delta$ is Lie derivable at $\Omega$ if and only if there exist a derivation $\tau:{\cal A} \rightarrow {\cal A}$ and and additive map $f: {\cal A}\rightarrow {\cal Z}({\cal A})$ vanishing at commutators $[A, B]$ with $AB=\Omega$ such that $\delta(A)=d(A)+f(A), \forall A\in {\cal A}.$ In particular, if ${\cal A}$ is a factor von Neuamnn algebra and $\Omega\in {\cal A}$ such that $\mbox{ker}(\Omega)\neq {0}$ or $\overline{\mbox{ran}(\Omega)}\neq H, $ then $\delta$ is Lie derivable at $\Omega$ if and only if it has the above form.

Key words: von Neumann algebras, Lie derivations, Lie derivable maps, Central carrier

CLC Number: 

  • O177.1
Trendmd