Acta mathematica scientia,Series A ›› 2001, Vol. 21 ›› Issue (zk): 676-682.
• Articles • Previous Articles Next Articles
YAN Jin
Online:
Published:
Supported by:
国家自然科学基金和国家教育部高校博士点基金资助课题
Abstract:
设犽≥1是一个整数,犌是一个2边连通图,犝是犞(犌)的子集.设犉是犌的支撑子图,使得对所有狓∈犞(犌)-犝,有deg犉(狓)=犽,若对所有狓∈犝,有deg犉(狓)≥犽,则犉称为带缺损犝的上限半犽因子;若对所有狓∈犝,有deg犉(狓)≤犽,则犉称为带缺损犝的下限半犽因子.本文证明了若犽|犞(犌)|是偶数,|犞(犌)|≥犽+2,对犞(犌)的任一基数为犽+2的子集犝,如果对任意犲∈犈(犌),犌都 有一个带缺损犝的上限半犽因子含犲,则犌是犽覆盖的;若犽≥2是一个偶数,|犞(犌)|>2犽+4,对犞(犌)的任一基数为犽+3的子集犝,如果对任意犲∈犈(犌),犌有一个带缺损犝的上限半犽因子含犲,则犌是犽覆盖的;还证明了若犽|犞(犌)|是偶数,|犞(犌)|≥犽+4,对犞(犌)的任一基数为3的子集犝,如果对任意犲∈犈(犌),犌都有一个带缺损犝的下限半犽因子含犲,则犌是犽覆盖的.
Key words: 图, 因子, 半因子, 覆盖
CLC Number:
YAN Jin. k-Factors and Semi-k-Factors with Special Properties in Graphs[J].Acta mathematica scientia,Series A, 2001, 21(zk): 676-682.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbA/EN/
http://121.43.60.238/sxwlxbA/EN/Y2001/V21/Izk/676
1 BondyJA,MurtyUSR.GraphTheorywithApplications.London:TheMacmillanPress,1976 2 KotaniK.犽Regularfactorsandsemi犽regularfactorsingraphs.DiscreteMath,1998,186:177-193 3 LovászL.Subgraphswithprescribedvalencies.JCombinTheory,1970,8(4):319-416 4 LiuGuizhen.On (犵,犳)coveredgraphs.MathActaScientia,1998,8(2):170-176 5 TutteW T.Thefactorsofgraphs.CanJMath,1952,4:314-328
Cited
Stability of Periodic Solution for a Discrete Leslie
Predator-prey System
Unbounded Solutions of Boundary Value Problems on the Half-Line with Countable Impulses
Existence and Exponential Stability of Almost Periodic Solutions
for Cellular Neural Networks with Delays