Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (3): 858-874.
Previous Articles Next Articles
Wenbin Wu,Xue Ren(),Ran Zhang*(
)
Received:
2024-05-17
Revised:
2025-01-03
Online:
2025-06-26
Published:
2025-06-20
Supported by:
CLC Number:
Wenbin Wu, Xue Ren, Ran Zhang. Traveling Waves for a Discrete Diffusive Vaccination Model with Delay[J].Acta mathematica scientia,Series A, 2025, 45(3): 858-874.
[1] | 许孟, 许春根. 拔尖创新工科人才培养中的 "数学建模" 课程研究. 黑龙江教育 (高教研究与评估), 2021 (6): 31-33 |
Xu M, Xu C G. Research on the "Mathematical Modeling" course in cultivating top-notch innovative engineering talents. Heilongjiang Education (Research and Evaluation of Higher Education), 2021 (6): 31-33 | |
[2] |
Liu X, Takeuchi Y, Iwami S. SVIR epidemic models with vaccination strategies. Journal of Theoretical Biology, 2008, 253: 1-11
pmid: 18023819 |
[3] | Kuniya T. Global stability of a multi-group SVIR epidemic model. Nonlinear Anal: Real World Appl, 2013, 14(2): 1135-1143 |
[4] | 李丹, 魏凤英, 毛学荣. 具有媒体报道的 SVIR 传染病模型的生存性分析. 数学物理学报, 2023, 43A(5): 1595-1606 |
Li D, Wei F Y, Mao X R. Survival analysis of an SVIR epidemic model with media coverage. Acta Math Sci, 2023, 43A(5): 1595-1606 | |
[5] | Wang J, Zhang R, Kuniya T. The dynamics of an SVIR epidemiological model with infection age. IMA Journal of Applied Mathematics, 2016, 81(2): 321-343 |
[6] | 杨瑜. 一类非局部时滞的SVIR反应扩散模型的全局吸引性. 数学物理学报, 2021, 41A(6): 1864-1870 |
Yang Y. Global attractivity of a nonlocal delayed and diffusive SVlR model. Acta Math Sci, 2021, 41A(6): 1864-1870 | |
[7] | Xu Z, Xu Y, Huang Y. Stability and traveling waves of a vaccination model with nonlinear incidence. Computers and Mathematics with Applications, 2018, 75: 561-581 |
[8] | Zhang R, Liu S. Traveling waves for SVIR epidemic model with nonlocal dispersal. Mathematical Biosciences and Engineering, 2019, 16}(3): 1654-1682 |
[9] | Zhou J, Yang Y, Hsu C H. Traveling waves for a nonlocal dispersal vaccination model with general incidence. Discrete and Continuous Dynamical Systems Series B, 2020, 25(4): 1469-1495 |
[10] | San X F, Wang Z C, Feng Z. Traveling waves for an epidemic system with bilinear incidence in a periodic patchy environment. Journal of Differential Equations, 2023, 357: 98-137 |
[11] | Fu S C, Guo J S, Wu C C. Traveling wave solutions for a discrete diffusive epidemic model. Journal of Nonlinear and Convex Analysis, 2016, 17: 1739-1751 |
[12] | Wu C C. Existence of traveling waves with the critical speed for a discrete diffusive epidemic model. Journal of Differential Equations, 2017, 262: 272-282 |
[13] | Chen Y, Guo J, Hamel F. Traveling waves for a lattice dynamical system arising in a diffusive endemic model. Nonlinearity, 2017, 30: 2334-2359 |
[14] | Zhang R, Wang J, Liu S. Traveling wave solutions for a class of discrete diffusive SIR epidemic model. J Nonlinear Science, 2021, 31: 1-33 |
[15] | Zhang Q, Wu S L. Wave propagation of a discrete SIR epidemic model with a saturated incidence rate. International Journal of Biomathematics, 2019, 12(3): 1950029 |
[16] | Chen X, Guo J. Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics. Mathematische Annalen, 2003, 326(1): 123-146 |
[17] | Dang J, Zhang G B, Tian G. Wave propagation for a discrete diffusive mosquito-borne epidemic model. Nonlinearity, 2024, 23(3): 104 |
[1] | Liu Jia, Bao Xiongxiong. Asymptotic Stability of Pyramidal Traveling Front for Nonlocal Delayed Diffusion Equation [J]. Acta mathematica scientia,Series A, 2025, 45(1): 44-53. |
[2] | Yang Yongli, Yang Yunrui. Traveling Wave Solutions to a Cholera Epidemic System with Spatio-Temporal Delay and Nonlocal Dispersal [J]. Acta mathematica scientia,Series A, 2025, 45(1): 110-135. |
[3] | Zhang Guangxin, Yang Yunrui, Song Xue. Periodic Traveling Wave Solutions of Delayed SEIR Systems with Nonlocal Effects [J]. Acta mathematica scientia,Series A, 2024, 44(1): 140-159. |
[4] | Li Dan,Wei Fengying,Mao Xuerong. Survival Analysis of an SVIR Epidemic Model with Media Coverage [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1595-1606. |
[5] | Zou Yonghui,Xu Xin. Existence of Back-Flow Point for the Two-Dimensional Compressible Prandtl Equation [J]. Acta mathematica scientia,Series A, 2023, 43(3): 691-701. |
[6] | Chunhui Shao,Jijiang Sun,Shiwang Ma. Ground State Travelling Waves in Infinite Lattices with Superquadratic Potentials [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1451-1461. |
[7] | Kai Wang,Hongyong Zhao. Traveling Wave of a Reaction-Diffusion Dengue Epidemic Model with Time Delays [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1209-1226. |
[8] | Yu Yang. Global Attractivity of a Nonlocal Delayed and Diffusive SVIR Model [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1864-1870. |
[9] | Lixiang Feng,Defen Wang. Global Stability of an Epidemic Model with Quarantine and Incomplete Treatment [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1235-1248. |
[10] | Qiaoyi Xiao,Chunqiu Li. Invariant Borel Probability Measures for the Discrete Three Component Reversible Gray-Scott Model [J]. Acta mathematica scientia,Series A, 2021, 41(2): 523-537. |
[11] | Xinzhe Zhang,Guofeng He,Gang Huang. Dynamical Properties of a Delayed Epidemic Model with Vaccination and Saturation Incidence [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1247-1259. |
[12] | Xue Zhang,Yuhuai Sun. Dynamical Analysis and Traveling Wave Solutions for Generalized (3+1)-Dimensional Kadomtsev-Petviashvili Equation [J]. Acta mathematica scientia,Series A, 2019, 39(3): 501-509. |
[13] | Hua Li,Sanhong Liu,Yile Fang,Xingan Zhang. Mathematical Modeling and Computer Simulation on Hand, Foot and Mouth Disease in Children [J]. Acta mathematica scientia,Series A, 2018, 38(5): 1032-1040. |
[14] | Zou Xia, Wu Shiliang. Traveling Waves in a Nonlocal Dispersal SIR Epidemic Model with Delay and Nonlinear Incidence [J]. Acta mathematica scientia,Series A, 2018, 38(3): 496-513. |
[15] | Lou Cuijuan, Yang Yin. Existence of Traveling Wave Solutions for a Classical Chemotaxis Model [J]. Acta mathematica scientia,Series A, 2015, 35(6): 1044-1058. |
|