[1] |
Tarnita C E, Bonachela J A, Sheffer E, et al. A theoretical foundation for multi-scale regular vegetation patterns. Nature, 2017, 541(7637): 398-401
|
[2] |
Carter P, Doelman A. Traveling stripes in the Klausmeier model of vegetation pattern formation. SIAM J Appl Math, 2018, 78(6): 3213-3237
|
[3] |
Liang J, Liu C, Sun G Q, et al. Nonlocal interactions between vegetation induce spatial patterning. Appl Math Comput, 2022, 428: 127061
|
[4] |
Klausmeier C A. Regular and irregular patterns in semiarid vegetation. Science, 1999, 284(5421): 1826-1828
|
[5] |
HilleRisLambers R, Rietkerk M, Van Den Bosch F, et al. Vegetation pattern formation in semi-arid grazing systems. Ecology, 2001, 82(1): 50-61
|
[6] |
von Hardenberg J, Meron E, Shachak M, et al. Diversity of vegetation patterns and desertification. Phys Rev Lett, 2001, 87(19): 198101
|
[7] |
Wang X L, Shi J P, Zhang G H. Bifurcation and pattern formation in diffusive Klausmeier-Gray-Scott model of water-plant interaction. J Math Anal Appl, 2021, 497(1): 124860
|
[8] |
Yi F Q, Wei J J, Shi J P. Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system. J Differ Equations, 2009, 246(5): 1944-1977
|
[9] |
Yi F Q, Liu J X, Wei J J. Spatiotemporal pattern formation and multiple bifurcations in a diffusive bimolecular model. Nonlinear Anal-Real, 2010, 11(5): 3770-3781
|
[10] |
Wang M X. Non-constant positive steady states of the Sel'kov model. J Differ Equations, 2003, 190(2): 600-620
|
[11] |
Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues. J Funct Anal, 1971, 8(2): 321-340
|
[12] |
Guo G H, Li B F, Wei M H, et al. Hopf bifurcation and steady-state bifurcation for an autocatalysis reaction-diffusion model. J Math Anal Appl, 2012, 391(1): 265-277
|
[13] |
Li S B, Wu J H, Dong Y Y. Turing patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme. J Differ Equation, 2015, 259(5): 1990-2029
|
[14] |
Li S B, Wu J H, Nie H. Steady-state bifurcation and Hopf bifurcation for a diffusive Leslie-Gower predator-prey model. Comput Math Appl, 2015, 70(12): 3043-3056
|
[15] |
Wang Y, Wu J, Jia Y. Steady-state bifurcation for a biological depletion model. Int J Bifurcat Chaos, 2016, 26(4): 1650066
|