Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (2): 567-575.
Previous Articles Next Articles
Received:
2024-04-25
Revised:
2024-12-23
Online:
2025-04-26
Published:
2025-04-09
Contact:
Xiao Chen
E-mail:cllyhn@163.com;cx180910@163.com
Supported by:
CLC Number:
Lei Cao,Xiao Chen. The Existence of Domain Wall Solution Arising in Abelian Higgs Model Subject to Born-Infeld Theory[J].Acta mathematica scientia,Series A, 2025, 45(2): 567-575.
[1] | Andrade I, Marques M A, Menezes R. Flat and bent branes in Born-Infeld-like scalar field models. Eur Phys J C, 2024, 84(1): Article 6 |
[2] | Bogomol'nyi E B. The stability of classical solutions. Sov J Nucl Phys, 1976, 24(4): 449-454 |
[3] | Bolognesi S, Chatterjee C C, Gudnason S B, et al. Vortex zero modes, large flux limit and Ambjørn-Nielsen-Olesen magnetic instabilities. J High Energy Phys, 2014, 2014(10): 1-21 |
[4] | Born M. Modified field equations with a finite radius of the electron. Nature, 1933, 132: Article 282 |
[5] | Born M. On the quantum theory of the electromagnetic field. Proc R Soc Lond A, 1934, 143(849): 410-437 |
[6] | Born M, Infeld L. Foundation of the new field theory. Nature, 1933, 132: 1004 |
[7] | Born M, Infeld L. Foundation of the new field theory. Proc R Soc Lond A, 1934, 144(852): 425-451 |
[8] | Callan Jr C G, Maldacena J M. Brane dynamics from the Born-Infeld action. Nucl Phys B, 1998, 513(1/2): 198-212 |
[9] |
Cao L, Chen S, Yang Y. Domain wall solitons arising in classical gauge field theories. Commun Math Phys, 2019, 369(1): 317-349
doi: 10.1007/s00220-019-03468-7 |
[10] | Chen X, Elliott C M, Tang Q. Shooting method for vortex solutions of a complex-valued Ginzburg-Landau equation. Proc. Roy Soc Edin A, 1994, 124(6): 1075-1088 |
[11] | Chen G, Ma T P, N'Diaye A T, et al. Tailoring the chirality of magnetic domain walls by interface engineering. Nat Commun, 2013, 4(1): 1-6 |
[12] | Chen G, Zhu J, Quesada A, et al. Novel chiral magnetic domain wall structure in Fe/Ni/Cu(001) films. Phys Rev Lett, 2013, 110(17): 177204 |
[13] | Chen S, Hastings S, McLeod J B, et al. A nonlinear elliptic equation arising from gauge field theory and cosmology. Proc R Soc Lond A, 1994, 446(1982): 453-478 |
[14] | Dodd R K, Eilbeck J C, Gibbon J D, et al. Solitons and Nonlinear Wave Equations. London: Academic Press, 1982 |
[15] | Faddeev L D, Korepin V E. Quantum theory of solitons. Phys Rep, 1978, 42(1): 1-87 |
[16] | Gibbons G W. Born-Infeld particles and Dirichlet p-branes. Nucl Phys B, 1998, 514(3): 603-639 |
[17] | Hu Y, Koutrolikos K. Nonlinear N=2 supersymmetry and 3D supersymmetric Born-Infeld theory. Nucl Phys B, 2022, 984: Article 115970 |
[18] | Hubert A, Schäfer R. Magnetic Domains:The Analysis of Magnetic Microstructures. Berlin:Springer, 2009 |
[19] | Jaffe A, Taubes C H. Vortices and Monopoles. Boston: Birkhäuser, 1980 |
[20] | Landau L, Lifshitz E. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys Z Sowjetunion, 1935, 8: 153-169 |
[21] | Li Z D, Hu Y C, He P B, et al. Domain wall dynamics in magnetic nanotubes driven by an external magnetic field. Chin Phys B, 2018, 27(7): 077505 |
[22] | Liouville J. Sur l'êquation aux différences partielles d2logλdudv±λ2a2=0. J Math Pures Appl, 1853, 18: 71-72 |
[23] | Liu L, Chen W X, Wang R Q, et al. Influence of spin-orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls. Chin Phys B, 2018, 27(4): Article 047201 |
[24] | Manton N S. Five vortex equations. J Phys A, 2017, 50(12): 125403 |
[25] | Nielsen H B, Olesen P. Vortex line models for dual strings. Nucl Phys B, 1973, 61: 45-61 |
[26] | Rajaraman R. Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory. Amsterdam: North-Holland, 1989 |
[27] | Spaldin N A. Magnetic Materials:Fundamentals and Applications. Cambridge: Cambridge University Press, 2010 |
[28] | Tseytlin A A. Born-Infeld Action, Supersymmetry and String Theory. Singapore: World Scientific, 2000 |
[29] | Yang Y. Classical solutions in the Born-Infeld theory. Proc R Soc Lond A, 2000, 456(1995): 615-640 |
[30] | Yang Y. Dyonically charged black holes arising in generalized Born-Infeld theory of electromagnetism. Ann Phys, 2022, 443: Article 168996 |
[31] | Yang Y. Electromagnetic asymmetry, relegation of curvature singularities of charged black holes, and cosmological equations of state in view of the Born-Infeld theory. Class Quant Grav, 2022, 39(19): Article 195007 |
[32] | Yang Y. Dyonic matter equations, exact point-source solutions, and charged black holes in generalized Born-Infeld theory. Phys Rev D, 2023, 107(8): Article 085007 |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 90
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 25
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|