Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (2): 465-478.
Previous Articles Next Articles
Received:
2024-04-22
Revised:
2024-09-24
Online:
2025-04-26
Published:
2025-04-09
Contact:
Yangchen Li
E-mail:lijianjun751026@163.com;19850712992@163.com
CLC Number:
Jianjun Li,Yangchen Li. The Existence and Blow-Up of Solutions for a Class of Fractional p-Laplace Diffusion Equation with Logarithmic Nonlinearity[J].Acta mathematica scientia,Series A, 2025, 45(2): 465-478.
[1] | Shao X, Tang G J. Blow-up phenomena for a kirchhoff-type parabolic equation with logarithmic nonlinearity. Applied Mathematics Letters, 2021, 116: Article 106969 |
[2] | Xiang M, Yang D, Zhang B. Degenerate Kirchhoff-type fractional diffusion problem with logarithmic nonlinearity. Asymptotic Analysis, 2020, 118(4): 313-329 |
[3] | Piskin E, Cömert T. Blow-up of solutions for a parabolic kirchhoff type equation with logarithmic nonlinearity. Gulf Journal of Mathematics, 2020, 9(2): 21-30 |
[4] | Ding H, Zhou J. Global existence and blow-up for a parabolic problem of Kirchhoff type with logarithmic nonlinearity. Applied Mathematics & Optimization, 2021, 83: 1651-1707 |
[5] | Liao M, Liu Q, Ye H. Global existence and blow-up of weak solutions for a class of fractional p-Laplacian evolution equations. Advances in Nonlinear Analysis, 2020, 9(1): 1569-1591 |
[6] | Shi P, Jiang M, Zeng F, et al. Initial boundary value problem for fractional p-Laplacian Kirchhoff type equations with logarithmic nonlinearity. Mathematical Biosciences and Engineering, 2021, 18(3): 2832-2848 |
[7] | Bidi Y, Beniani A, Bouhali K, et al. Local existence and blow-up of solutions for wave equation involving the fractional laplacian with nonlinear source term. Axioms, 2023, 12(4): 343 |
[8] | Boudjeriou T. Global existence and blow-up for the fractional p-Laplacian with logarithmic nonlinearity. Mediterranean Journal of Mathematics, 2020, 17(5): Article 162 |
[9] |
Lian W, Wang J, Xu R Z. Global existence and blow up of solutions for pseudo-parabolic equation with singular potential. Journal of Differential Equations, 2020, 269(6): 4914-4959
doi: 10.1016/j.jde.2020.03.047 |
[10] | Liu W, Yu J, Li G. Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems-S, 2021, 14(12): 4337-4366 |
[11] | Yang Y, Tian X, Zhang M. Blow-up of solutions to degenerate Kirchhoff type dissusion problems involving the fractional p-Laplacian. Electronic Journal of Differential Equations, 2018, 154: 1-11 |
[12] | Jiang R, Zhou J. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18(3): 1-6 |
[13] | Pucci P, Xiang M, Zhang B. Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in RN. Calculus of Variations and Partial Differential Equations, 2015, 54: 2785-2806 |
[14] | Pan N, Zhang B, Cao J. Degenerate Kirchhoff-type diffusion problems involving the fractional p-Laplacian. Nonlinear Analysis: Real World Applications, 2017, 37: 56-70 |
[15] | Shi M, Wang J. Blow-up properties of solution for a parabolic equations involving the fractional p-Laplacian with logarithmic nonlinearity. Periodical of Ocean University of China, 2020, 52(4): 138-146 |
[16] | Pang Y, Rădulescu V D, Xu R Z. Global existence and finite time blow-up for the m-Laplacian parabolic problem. Acta Mathematica Sinica, English Series, 2023, 39(8): 1497-1524 |
[17] | Boudjeriou T. Global well-posedness and finite time blow-up for a class of wave equation involving fractional p-Laplacian with logarithmic nonlinearity. Mathematische Nachrichten, 2023, 296(3): 938-956 |
[18] | Zeng F, Shi P, Jiang M. Global existence and finite time blow-up for a class of fractional p-Laplacian Kirchhoff type equations with logarithmic nonlinearity. AIMS Math, 2021, 6(3): 2559-2578 |
[19] | Zhao Q. Initial boundary value problem of a class of pseudo-parabolic Kirchhoff equations with logarithmic nonlinearity. arXiv preprint, 2021, arXiv:2104.01597 |
[20] | Ding H, Zhou J. Global existence and blow-up for a parabolic problem of Kirchhoff type with logarithmic nonlinearity. Applied Mathematics & Optimization, 2021, 83: 1651-1707 |
[21] | Alves C O, Boudjeriou T. Existence of solution for a class of nonlocal problem via dynamical methods. Rendiconti del Circolo Matematico di Palermo Series, 2021, 2: 1-22 |
[22] | Xiang M Q, Zhang B L, Qiu H. Existence of solutions for a critical fractional Kirchhoff type problem in RN. Science China Mathematics, 2017, 60: 1647-1660 |
[23] | Lin Q, Tian X, Xu R, et al. Blow up and blow up time for degenerate Kirchhoff-type wave problems involving the fractional Laplacian with arbitrary positive initial energy. Discrete & Continuous Dynamical Systems-Series S, 2020, 13(7): 2095-2107 |
[24] | Guo H, Zhang Y, Zhou H S. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. arXiv preprint, 2017, arXiv:1707.02445 |
[25] | Mingqi X, Rădulescu V D, Zhang B. Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions. Nonlinearity, 2018, 31(7): 3228 |
[26] | Zhou J. Global existence and blow-up of solutions for a Kirchhoff type plate equation with damping. Applied Mathematics and Computation, 2015, 265: 807-818 |
[27] | Hiramatsu T, Kawasaki M, Takahashi F. Numerical study of Q-ball formation in gravity mediation. Journal of Cosmology and Astroparticle Physics, 2010, 2010(6): 008 |
[28] | Zhang H W, Liu G W, Hu Q Y. Exponential decay of energy for a logarithmic wave equation. Partial Differ Equ, 2015, 28(3): 269-277 |
[29] | Ji S, Yin J, Cao Y. Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity. Journal of Differential Equations, 2016, 261(10): 5446-5464 |
[30] | Chen H, Tian S. Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity. Journal of Differential Equations, 2015, 258(12): 4424-4442 |
[31] | Ding H, Zhou J. Global existence and blow-up for a mixed pseudo-parabolic p-Laplacian type equation with logarithmic nonlinearity. Journal of Mathematical Analysis and Applications, 2019, 478(2): 393-420 |
[32] | Ji C, Szulkin A. A logarithmic Schrödinger equation with asymptotic conditions on the potential. Journal of Mathematical Analysis and Applications, 2016, 437(1): 241-254 |
[33] | 温兰, 杨晗. 一类带对数非线性源项的 p-Laplace 抛物方程解的存在性与爆破. 应用数学, 2022, 35(3): 544-552 |
Wen Lan, Yang Han. Global existence and blow-up of solutions for a class of p-Laplacian parabolic equations with logarithmic nonlinearity. Mathematica Applicata, 2022, 35(3): 544-552 |
[1] | Shi Jincheng, Liu Yan. Global Existence and Blow-Up for Semilinear Third Order Evolution Equation with Different Power Nonlinearities [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1550-1562. |
[2] | Xiao Suping, Zhao Yuanzhang. Existence and Nonexistence of Solutions for Nonhomogeneous Dirichlet Exterior Problem to a Semilinear Hyperbolic Differential Inequality [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1167-1182. |
[3] | Gao Xiaoru, Li Jianjun, Tu Jun. Blow-Up of Solutions for a Class of Fractional Diffusion Equations with Time Dependent Coefficients [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1230-1241. |
[4] | Wang Weimin, Yan Wei. Convergence Problem and Dispersive Blow-up for the Modified Kawahara Equation [J]. Acta mathematica scientia,Series A, 2024, 44(3): 595-608. |
[5] | Li Fengjie, Li Ping. Blow-up Solutions in a p-Kirchhoff Equation of Pseudo-Parabolic Type [J]. Acta mathematica scientia,Series A, 2024, 44(3): 717-736. |
[6] | Jian Hui, Gong Min, Wang Li. On the Blow-Up Solutions of Inhomogeneous Nonlinear Schrödinger Equation with a Partial Confinement [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1350-1372. |
[7] | Shen Xuhui,Ding Juntang. Blow-Up Conditions of Porous Medium Systems with Gradient Source Terms and Nonlinear Boundary Conditions [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1417-1426. |
[8] | Chen Xuejiao, Li Yuanfei, Hou Chunjuan. Phragmén-Lindelöf Type Results for the Solutions of Forchheimer Equations on a Semi-Infinite Cylinder [J]. Acta mathematica scientia,Series A, 2023, 43(2): 505-514. |
[9] | Ouyang Baiping. Blow-up of Solutions to the Euler-Poisson-Darboux-Tricomi Equation with a Nonlinear Memory Term [J]. Acta mathematica scientia,Series A, 2023, 43(1): 169-180. |
[10] | Feng Meiqiang, Zhang Xuemei. On the Optimal Global Estimates of Boundary Blow-up Solutions to the Monge-Ampère Equation [J]. Acta mathematica scientia,Series A, 2023, 43(1): 181-202. |
[11] | Zhen Qiu,Guangwu Wang. Blow-Up of the Smooth Solutions to the Quantum Navier-Stokes-Landau-Lifshitz Equations [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1074-1088. |
[12] | Lianfeng Yang,Xiaoyu Zeng. Existence and Blow-Up Behavior of Ground State Solutions for Pseudo-Relativistic Schrödinger Equations [J]. Acta mathematica scientia,Series A, 2022, 42(1): 165-175. |
[13] | Yuge Du,Shuying Tian. Existence and Blow-Up of a Parabolic Equation with Logarithmic Nonlinearity [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1816-1829. |
[14] | Jingran He,Helin Guo,Wenqing Wang. A p-Laplace Eigenvalue Problem with Coercive Potentials [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1323-1332. |
[15] | Hui Yang,Yuzhu Han. Blow-Up Properties of Solutions to a Class of Parabolic Type Kirchhoff Equations [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1333-1346. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 71
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 56
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|