Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (2): 479-492.
Previous Articles Next Articles
Guozheng Wang(),Zhenxia Shi*(
)
Received:
2024-01-30
Revised:
2024-10-15
Online:
2025-04-26
Published:
2025-04-09
Contact:
Zhenxia Shi
E-mail:1152619979@qq.com;shizhx08@mail.lzjtu.cn
Supported by:
CLC Number:
Guozheng Wang,Zhenxia Shi. Existence of Periodic Forced Waves for a Lotka-Volterra Cooperative System with Shifting Habitat[J].Acta mathematica scientia,Series A, 2025, 45(2): 479-492.
[1] |
Berestycki H, Diekmann O, Nagelkerke C J, et al. Can a species keep pace with a shifting climate? B Math Biol, 2009, 71(2): 399-429
doi: 10.1007/s11538-008-9367-5 pmid: 19067084 |
[2] | Berestycki H, Fang J. Forced waves of the Fisher-KPP equation in a shifting environment. J Differ Equations, 2018, 264(3): 2157-2183 |
[3] | Berestycki H, Rossi L. Reaction-diffusion equations for population dynamics with forced speed I-The case of the whole space. Discrete Cont Dyn-A, 2008, 21(1): 41-67 |
[4] | Fang J, Peng R, Zhao X Q. Propagation dynamics of a reaction-diffusion equation in a time-periodic shifting environment. J Math Pure Appl, 2021, 147: 1-28 |
[5] | Gonzalez P, Neilson R P, Lenihan J M, et al. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Global Ecol Biogeogr, 2010, 19(6): 755-768 |
[6] | Gu Y M, Shi Z X. Existence of forced waves for a 2-D lattice differential equation in a time-periodic shifting habitat. Discrete Cont Dyn-B, 2023, 28(5): 3307-3321 |
[7] | Guo J S, Wu C H. Existence and uniqueness of traveling waves for a monostable 2-D lattice dynamical system. Osaka J Math, 2008, 45(2): 327-346 |
[8] | Hu C B, Li B T. Spatial dynamics for lattice differential equations with a shifting habitat. J Differ Equations, 2015, 259(5): 1967-1989 |
[9] | Hu H J, Zou X F. Existence of an extinction wave in the Fisher equation with a shifting habitat. P Am Math Soc, 2017, 145(11): 4763-4771 |
[10] | Kopell N, Ermentrout G B, Williams T L. On chains of oscillators forced at one end. Siam J Appl Math, 1991, 51(5): 1397-1417 |
[11] | Laplante J P, Erneux T. Propagation failure in arrays of coupled bistable chemical reactors. J Phys Chem, 1992, 96(12): 4931-4934 |
[12] | Li B T, Bewick S, Shang J, et al. Persistence and spread of a species with a shifting habitat edge. SIAM J Appl Math, 2014, 74(5): 1397-1417 |
[13] | Meng Y L, Yu Z X, Zhang S Q. Spatial dynamics of the lattice Lotka-Volterra competition system in a shifting habitat. Nonlinear Anal-Real, 2021, 60: Article 103287 |
[14] | Pang L Y, Wu S L. Propagation dynamics for lattice differential equations in a time-periodic shifting habitat. Z Angew Math Phys, 2021, 72(3): Article 93 |
[15] | Qiao S X, Li W T, Wang J B. Asymptotic propagations of a nonlocal dispersal population model with shifting habitats. Eur J Appl Math, 2022, 33(4): 701-728 |
[16] | Taylor J E, Cahn J W, Handwerker C A. Overview No.98 I-Geometric models of crystal growth. Acta Metall Mater, 1992, 40(7): 1443-1474 |
[17] | Verhulst F. Nonlinear Differential Equations and Dynamical Systems. Berlin: Springer-Verlag, 1996 |
[18] | Wang J B, Zhao X Q. Uniqueness and global stability of forced waves in a shifting environment. P Am Math Soc, 2019, 147(4): 1467-1481 |
[19] | Wu C F, Xu Z Q. Propagation dynamics in a heterogeneous reaction-diffusion system under a shifting environment. J Dyn Differ Equ, 2023, 35(1): 493-521 |
[20] | Wu J H, Zou X F. Traveling wave fronts of reaction-diffusion systems with delay. J Dyn Differ Equ, 2001, 13: 651-687 |
[21] | Yang Y, Wu C F, Li Z X. Forced waves and their asymptotics in a Lotka-Volterra cooperative model under climate change. Appl Math Comput, 2019, 353: 254-264 |
|