Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (1): 54-73.
Previous Articles Next Articles
Yang Guicheng1,Wen Yangzhe2,Mao Jing2,3,*()
Received:
2024-06-03
Revised:
2024-07-26
Online:
2025-02-26
Published:
2025-01-08
Supported by:
CLC Number:
Yang Guicheng, Wen Yangzhe, Mao Jing. A Universal Inequality for the Dirichlet Eigenvalue Problem of the Weighted Laplacian and its Application[J].Acta mathematica scientia,Series A, 2025, 45(1): 54-73.
[1] | Ashbaugh M S, Benguria R D. Bounds for ratios of the first, second, and third membrane eigenvalues// Angell T, Pamela Cook L, Kleinman R, Olmstead W. Nonlinear Problems in Applied Mathematics. Philadelphia: Soc Indu Appl Math, 1996: 30-42 |
[2] | Ashbaugh M S, Benguria R D. The range of values of λ2λ1 and λ3λ1 for the fixed membrane problem. Reviews in Mathematical Physics, 1994, 6(5a): 999-1009 |
[3] | Faber G. Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt// München Z. Sitzungsber Bayer Akad Wiss München Math-Phys KI, 1923: 169-172 |
[4] | Brands J. Bounds for the ratios of the first three membrane eigenvalues. Archive for Rational Mechanics and Analysis, 1964, 16: 265-268 |
[5] | Chavel I. Eigenvalues in Riemannian Geometry. Orlando: Academic Press, 1984 |
[6] | Chen D G, Zheng T. Bounds for ratios of the membrane eigenvalues. Journal of Differential Equations, 2011, 250(3): 1575-1590 |
[7] | Cheng Q M. Universal estimates for eigenvalues and applications// Proceedings of the 6th International Congress of Chinese Mathematicians. Advanced Lectures in Mathematics, 2016: 37-52 |
[8] | Cheng Q M, Qi X. Inequalities for eigenvalues of the Laplacian. arXiv:1104.5298v1 |
[9] | Cheng Q M, Yang H. Bounds on eigenvalues of Dirichlet Laplacian. Mathematische Annalen, 2007, 337(1): 159-175 |
[10] | Hile G N, Protter M H. Inequalities for eigenvalues of the Laplacian. Indiana University Mathematics Journal, 1980, 29(4): 523-538 |
[11] | Krahn E. Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Mathematische Annalen, 1925, 94(1): 97-100 |
[12] | Levitin M, Parnovski L. Commutators spectral trace identities, and universal estimates for eigenvalues. J Funct Anal, 2002, 192(2): 425-445 |
[13] | Lu W, Mao J, Wu C X, Zeng L Z. Eigenvalue estimates for the drifting Laplacian and the p-Laplacian on submanifolds of warped products. Applicable Analysis, 2021, 100(11): 2275-2300 |
[14] | Payne L E, Pólya G, Weinberger H F. On the ratio of consecutive eigenvalues. Journal of Mathematical Physics, 1956, 35(1-4): 289-298 |
[15] | Pólya G. On the eigenvalues of vibrating membranes. Proceedings of the London Mathematical Society, 1961, 11(3): 419-433 |
[16] | Rosales C, Canete A, Bayle V, Morgan F. On the isoperimetric problem in Euclidean space with density. Calculus of Variations and Partial Differential Equations, 2008, 31(1): 27-46 |
[17] | Thompson C J. On the ratio of consecutive eigenvalues in n-dimensions. Studies in Applied Mathematics, 1969, 48(3): 281-283 |
[18] | Wei G F, Wylie W. Comparison geometry for the Bakry-Émery Ricci tensor. Journal of Differential Geometry, 2009, 83(2): 337-405 |
[19] | Yang H C. An estimate of the difference between consecutive eigenvalues. International Centre for Theoretical Physics, 1991 |
[20] | Zeng L Z, Sun H J. Eigenvalues of the drifting Laplacian on smooth metric measure spaces. Pacific J Math, 2022, 319(2): 439-470 |
[1] | Zhang Youhua. A Vanishing Theorem forp-harmonicℓ-forms in Space with Constant Curvature [J]. Acta mathematica scientia,Series A, 2024, 44(1): 26-36. |
[2] | Sheng Weimin, Wang Yinhang. An Extension of Minkowski Formulae for Free Boundary Hypersurfaces in a Ball [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1641-1648. |
[3] |
Wang Hejun.
Some Reverse Bonnesen-style Inequalities in |
[4] | Qian Jinhua,Bian Jinxin,Fu Xueshan. Structure Expression Form of Isotropic Growth Surface [J]. Acta mathematica scientia,Series A, 2023, 43(3): 657-668. |
[5] | Yang Dengyun, Zhang Jinguo, Tao Yongqian. Spectral Geometry of Willmore and Extremal Hypersurfaces [J]. Acta mathematica scientia,Series A, 2023, 43(1): 35-42. |
[6] | He Yue, Ruan Qihua. Refined Lower Bound for Sums of Eigenvalues of the Laplace Operator [J]. Acta mathematica scientia,Series A, 2023, 43(1): 14-26. |
[7] | Rui Bin,Xingxing Wang,Chunna Zeng. The Bonnesen-type Inequalities for Plane Closed Curves [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1601-1610. |
[8] |
Xu Dong,Yan Zhang,Chunna Zeng,Xingxing Wang.
The General Inverse Bonnesen-Style Inequalities in |
[9] |
Ruiwei Xu,Miaoxin Lei.
Classification of Calabi Hypersurfaces in |
[10] | Zengle Zhang. Bonnesen-Style Inequalities for Star Bodies [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1249-1262. |
[11] | Yan Zhang,Chunna Zeng,Xingxing Wang. Some New Bonnesen-Type Inequalities of the Tetrahedron in R3 [J]. Acta mathematica scientia,Series A, 2021, 41(4): 989-996. |
[12] | Chunna Zeng,Lu Peng,Lei Ma,Xinxin Wang. The Bonnesen-Style Isoperimetric Inequalities of the Tetrahedral in R3 [J]. Acta mathematica scientia,Series A, 2021, 41(2): 296-302. |
[13] |
Ya Gao,Jing Mao,Chunlan Song.
Existence and Uniqueness of Solutions to the Constant Mean Curvature Equation with Nonzero Neumann Boundary Data in Product Manifold |
[14] | Yue He,Hailong Her. An Estimate of Spectral Gap for Schrödinger Operators on Compact Manifolds [J]. Acta mathematica scientia,Series A, 2020, 40(2): 257-270. |
[15] | Changjian Zhao. On Isoperimetric Inequality for Mixture of Convex and Star Bodies [J]. Acta mathematica scientia,Series A, 2019, 39(5): 993-1000. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 138
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 96
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|