Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (1): 74-91.
Previous Articles Next Articles
Li Xin(),Hao Wenjuan(
),Liu Yang*(
)
Received:
2023-09-04
Revised:
2023-12-25
Online:
2025-02-26
Published:
2025-01-08
Supported by:
CLC Number:
Li Xin, Hao Wenjuan, Liu Yang. The Asymptotic Behavior of the Generalized Brinkman-Forchheimer Equation[J].Acta mathematica scientia,Series A, 2025, 45(1): 74-91.
[1] | Fan J, Zhou Y. Global well-posedness of the Navier-Stokes-omega equations. Appl Math Lett, 2011, 24(11): 1915-1918 |
[2] | Koch H, Tataru D. Well-posedness for the Navier-Stokes equations. Adv Math, 2001, 157(1): 22-35 |
[3] | Paicu M, Zhang Z. Global well-posedness for 3D Navier-Stokes equations with ill-prepared initial data. J Inst Math Jussieu, 2014, 13(2): 395-411 |
[4] | Craig W, Huang X, Wang Y. Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations. J Math Fluid Mech, 2013, 15(4): 747-758 |
[5] | Chen Q, Miao C, Zhang Z. Global well-posedness for the 3D rotating Navier-Stokes equations with highly oscillating initial data. Pacific J Math, 2013, 262(2): 263-283 |
[6] |
Larios A, Pei Y, Rebholz L. Global well-posedness of the velocity-vorticity-Voigt model of the 3D Navier-Stokes equations. J Differ Equations, 2019, 266(5): 2435-2465
doi: 10.1016/j.jde.2018.08.033 |
[7] | 孙小春, 何港晶. Navier-Stokes-Coriolis 方程解的长时间存在性. 数学物理学报, 2022, 42A(5): 1416-1423 |
Sun X C, He G J. Long time existence of the solutions for the Navier-Stokes-Coriolis equations. Acta Math Sci, 2022, 42A(5): 1416-1423 | |
[8] | Hajduk K W, Robinson J C. Energy equality for the 3D critical convective Brinkman-Forchheimer equations. J Differ Equations, 2017, 263(11): 7141-7161 |
[9] | Kalantarov V, Zelik S. Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities. Commun Pure Appl Anal, 2012, 11(5): 2037-2054 |
[10] | Markowich P A, Titi E S, Trabelsi S. Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model. Nonlinearity, 2016, 29(4): Article 1292 |
[11] | Wang B, Lin S. Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation. Math Method Appl Sci, 2008, 31(12): 1479-1495 |
[12] | You Y, Zhao C, Zhou S. The existence of uniform attractors for 3D Brinkman-Forchheimer equations. Discrete Contin Dyn Syst, 2012, 32(10): 3787-3800 |
[13] | Xueli S, Xi D, Baoming Q. Dimension estimate of the global attractor for a 3D Brinkman-Forchheimer equation. Wuhan University Journal of Natural Sciences, 2023, 28(1): 1-10 |
[14] | Caucao S, Esparza J. An augmented mixed FEM for the convective Brinkman-Forchheimer problem: a priori and a posteriori error analysis. Journal of Computational and Applied Mathematics, 2024, 438: 115517 |
[15] | Ghidaglia J M, Temam R. Long time behavior for partly dissipative equations: the slightly compressible 2D-Navier-Stokes equations. Asymptotic Anal, 1988, 1(1): 23-49 |
[16] | Kalantarov V, Zelik S. Asymptotic regularity and attractors for slightly compressible Brinkman-Forchheimer equations. Appl Math Optim, 2021, 84(3): 3137-3171 |
[17] | Córdoba A, Córdoba D. A maximum principle applied to quasi-geostrophic equations. Comm Math Phys, 2004, 249(3): 511-528 |
[18] | 郭柏灵, 蒲学科, 黄凤辉. 分数阶偏微分方程及其数值解. 北京: 科学出版社, 2011 |
Guo B L, Pu X K, Huang F H. Fractional Partial Differential Equations and their Numerical Solutions. Beijing: Science Press, 2011 | |
[19] | Nguyen H Q. Global weak solutions for generalized SQG in bounded domains. Anal PDE, 2018, 11(4): 1029-1047 |
[20] | Constantin P, Ignatova M, Nguyen H Q. Inviscid limit for SQG in bounded domains. SIAM J Math Anal, 2018, 50(6): 6196-6207 |
[21] |
Liu Y, Sun C Y. Inviscid limit for the damped generalized incompressible Navier-Stokes equations on ![]() ![]() |
[22] | 孙小春, 吴育联, 徐郜婷. 分数阶不可压缩 Navier-Stokes-Coriolis 方程解的整体适定性. 数学物理学报, 2024, 44A(3): 737-745 |
Sun X C, Wu Y L, Xu G T. Global well-posedness for the fractional Navier-Stokes equations with the Coriolis force. Acta Math Sci, 2024, 44A(3): 737-745 | |
[23] | Pata V. Uniform estimates of Gronwall type. J Math Anal Appl, 2011, 373(1): 264-270 |
[24] | Kalantarov V, Zelik S. Finite-dimensional attractors for the quasi-linear strongly-damped wave equation. J Differ Equations, 2009, 247(4): 1120-1155 |
[25] | Pata V, Zelik S. Smooth attractors for strongly damped wave equations. Nonlinearity, 2006, 19(7): 1495-1506 |
[26] | Zelik S. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Commun Pure Appl Anal, 2004, 3(4): 921-934 |
[27] |
Mei X Y, Savostianov A, Sun C Y, Zelik S. Infinite energy solutions for weakly damped quintic wave equations in ![]() ![]() |
[28] | Babin A V, Vishik M I. Attractors of Evolution Equations. Holland: Elsevier, 1992 |
[29] | Vishik M I, Chepyzhov V V. Trajectory attractors of equations of mathematical physics. Russian Math Surveys, 2011, 66(4): 637-731 |
[30] | Ladyzhenskaya O. Attractors for Semi-groups and Evolution Equations (Lezioni Lincee). Cambridge: Cambridge University Press, 1991 |
[31] | Miranville A, Zelik S. Attractors for dissipative partial differential equations in bounded and unbounded domains. Handbook of Differential Equations: Evolutionary Equations, 2008, 4: 103-200 |
[32] | Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics. Berlin: Springer-Verlag, 1997 |
[33] |
Efendiev M, Miranville A, Zelik S. Exponential attractors for a nonlinear reaction-diffusion system in ![]() ![]() |
[34] | Fabrie P, Galusinski C, Miranville A, Zelik S. Uniform exponential attractors for a singular perturbed damped wave equation. Discrete Contin Dyn Syst, 2004, 10(1/2): 211-238 |
[35] | Adams J F. Stable Homotopy and Generalised Homology. Chicago: University of Chicago Press, 1974 |
[1] | Sun Xiaochun, Wu Yulian, Xu Gaoting. Global Well-Posedness for the Fractional Navier-Stokes Equations with the Coriolis Force [J]. Acta mathematica scientia,Series A, 2024, 44(3): 737-745. |
[2] | Zhang Xin, Wu Xinglong. The Initial Value Problem for a Modified Camassa-Holm Equation with Cubic Nonlinearity [J]. Acta mathematica scientia,Series A, 2024, 44(2): 376-383. |
[3] | Wang Xuan, Yuan Haiyan. Attractors for the Nonclassical Diffusion Equation with Time-Dependent Memory Kernel [J]. Acta mathematica scientia,Series A, 2024, 44(2): 429-452. |
[4] |
Liu Guowei, Wang Qiling.
The Well-posedness of a Delayed Non-Newtonian Fluid on ![]() ![]() |
[5] | Peng Qingqing,Zhang Zhifei. Global Attractor for a Coupled System of Wave and Euler-Bernoulli Plate Equation with Boundary Weak Damping [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1179-1196. |
[6] | Cai Senlin,Zhou Shouming,Chen Rong. On the Cauchy Problem for a Shallow Water Regime of Waves with Large Amplitude [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1197-1120. |
[7] | Zeng Jing,Peng Jiayu. Essential Stability and Hadamard Well-Posedness of Excess Demand Equilibrium Problems [J]. Acta mathematica scientia,Series A, 2023, 43(3): 930-938. |
[8] |
Zhu Kaixuan, Sun Tao, Xie Yongqin.
Global Attractors for a Class of Reaction-Diffusion Equations with Distribution Derivatives in ![]() ![]() |
[9] | Lin Jie, Wang Tianyi. Well-Posedness and Convergence Rates of Three-Dimensional Incompressible Euler Flows in Axisymmetric Nozzles with Symmetric Body [J]. Acta mathematica scientia,Series A, 2023, 43(1): 219-237. |
[10] | Xiangyu Xiao,Zhilin Pu. The Global Attractors of Cahn-Hilliard-Brinkman System [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1027-1040. |
[11] | Baishun Lai,Qing Luo. Well-Posedness of a Fourth Order Parabolic Equation Modeling MEMS [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1718-1733. |
[12] | Dandan Sun,Yingke Li,Zhidong Teng,Tailei Zhang. Analysis of the Stability for Measles Epidemic Model with Age-Structured [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1950-1968. |
[13] | Xuanxuan Xi,Mimi Hou,Xianfeng Zhou. Invariance Sets and Well-Posedness for the Weak Solution of Non-Autonomous Caputo Fractional Evolution Equation [J]. Acta mathematica scientia,Series A, 2021, 41(1): 149-165. |
[14] | Xiaoming Peng,Xiaoxiao Zheng,Yadong Shang. Global Attractors for a Fourth Order Pseudo-Parabolic Equation with Fading Memory [J]. Acta mathematica scientia,Series A, 2019, 39(1): 114-124. |
[15] | Didi Hu,Xuan Wang. The Strong Time-Dependent Global Attractors for the Non-Damping Abstract Evolution Equations with Fading Memory [J]. Acta mathematica scientia,Series A, 2019, 39(1): 81-94. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 187
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 83
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|