[1] Adimy M, Elazzouzi A, Ezzinbi K.Bohr-Neugebauer type theorem for some partial neutral functional differential equations. Nonlinear Analysis: Theory, Methods and Applications, 2007, 66(5): 1145-1160 [2] Amerio L, Prouse G.Almost-Periodic Functions and Functional Equations. New York: Springer, 1971 [3] Beltramo A, Hess P.On the principal eigenvalue of a periodic-parabolic operator. Communications in Partial Differential Equations, 1984, 9(9): 919-941 [4] Benkhalti R, Bouzahir H, Ezzinbi K.Existence of a periodic solution for some partial functional differential equations with infinite delay. Journal of Mathematical Analysis and Applications, 2001, 256(1): 257-280 [5] Corduneanu C.Almost Periodic Oscillations and Waves. New York: Springer, 2009 [6] Esteban M J.A remark on the existence of positive periodic solutions of superlinear parabolic problems. Proceeding of the American Mathematical Society, 1988, 102(1): 131-136 [7] Esteban M J.On periodic solutions of superlinear parabolic problems. Transactions of the American Mathematical Society, 1986, 293(1): 171-189 [8] Evans L C. Partial Differential Equations.Providence, RI: American Mathmatical Society, 2010 [9] Fink A M.Almost Periodic Differential Equations. Berlin: Springer-Verlag, 1974 [10] Fréchet M.Les fonctions asymptotiquement presque-périodiques. Revue Sei, 1941, 79: 341-354 [11] Fréchet M.Les fonctions asymptotiquement presque-périodiques continues. CR Acad Sei Paris, 1941, 213: 520-522 [12] Furumouchi T, Naito T, Minh N V.Boundedness and almost periodicity of solutions of partial functional differential equations. Journal of Differential Equations, 2002, 180(1): 125-152 [13] Hu Z, Mingarelli A B.Almost periodicity of solutions for almost periodic evolutions equations equations. Differential Intergral Equations, 2005, 18(4): 469-480 [14] Nee J.Almost periodic solutions to systems of parabolic equations. Journal of Applied Mathematics and Stochastic Analysis, 1994, 7(4): 581-586 [15] Ji S, Yin J, Li Y.Positive periodic solutions of the weighted $p$-Laplacian with nonlinear sources. Discrete and Continuous Dynamical Systems, 2018, 38(5): 2411-2439 [16] Levitan B M, Zhikov V V.Almost Periodic Functions and Differential Equations. translated from the Russian by L W Longdon. Cambridge-NewYork: Cambridge University Press, 1983 [17] Quittner P.Multiple equilibria, periodic solutions and a priori bounds for solutions in superlinear parabolic problems. Nonlinear Differential Equations & Applications NoDEA, 2004, 11(2): 237-258 [18] Rao S.On differential operators with Bohr-Neugebauer type property. Journal of Differential Equations, 1973, 13(3): 490-494 [19] Rossi L.Liouville type results for periodic and almost periodic linear operators. Annales de l'Institut Henri Poincaré C, Analyse non Linéaire, 2009, 26(6): 2481-2502 [20] Schmitt K, Ward J.Almost periodic solutions of nonlinear second order differential equations. Results in Mathematics, 1992, 21(1/2): 190-199 [21] Wang Y, Yin J, Wu Z.Periodic solutions of evolution $p$-Laplacian equations with nonlinear sources. Journal of Mathematical Analysis & Applications, 1998, 219(1): 76-96 [22] Xie Y, Lei P.Almost periodic solutions of sublinear heat equations. Proceeding of the American Mathematical Society, 2017, 146(1): 233-245 [23] Xie Y, Lei P.On global boundedness, stability and almost periodicity of solutions for heat equations. Funkcialaj Ekvacioj, 2019, 62(2): 191-208 [24] Xie Y, Lei P, Yin J.Boundedness and stability of global solutions for some superlinear and nonautonomous heat equations. J Differential Equations, 2023, 370: 167-201 [25] Yang Y.Almost periodic solutions of nonlinear parabolic equation. Bulletin of the Australian Mathematical Society, 1988, 38(2): 231-238 [26] Yin J, Jin C.Periodic solutions of the evolutionary $p$-Laplacian with nonlinear sources. Journal of Mathematical Analysis & Applications, 2010, 368(2): 604-622 [27] Yoshizawa T, Singh V.Stability theory and the existence of periodic solutions and almost periodic solutions. IEEE Transactions on Systems Man & Cybernetics, 1979, 9(5): 314-314 [28] Zhang C.Almost Periodic Type Functions and Ergodicity. Beijing: Science Press, 2003 [29] Zheng Z, Ding H, N'Guérékata G M. The space of continuous periodic functions is a set of first category in AP($X$). J Funct Spaces, 2013, 2013(1): 275702 |