Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (1): 31-43.
Previous Articles Next Articles
Received:
2024-05-16
Revised:
2024-08-07
Online:
2025-02-26
Published:
2025-01-08
Supported by:
CLC Number:
Ren Chenchen, Yang Sudan. Existence and Uniqueness of Solutions for Sub-Linear Heat Equations with Almost Periodic Coefficients[J].Acta mathematica scientia,Series A, 2025, 45(1): 31-43.
[1] | Adimy M, Elazzouzi A, Ezzinbi K. Bohr-Neugebauer type theorem for some partial neutral functional differential equations. Nonlinear Analysis: Theory, Methods and Applications, 2007, 66(5): 1145-1160 |
[2] | Amerio L, Prouse G. Almost-Periodic Functions and Functional Equations. New York: Springer, 1971 |
[3] | Beltramo A, Hess P. On the principal eigenvalue of a periodic-parabolic operator. Communications in Partial Differential Equations, 1984, 9(9): 919-941 |
[4] | Benkhalti R, Bouzahir H, Ezzinbi K. Existence of a periodic solution for some partial functional differential equations with infinite delay. Journal of Mathematical Analysis and Applications, 2001, 256(1): 257-280 |
[5] | Corduneanu C. Almost Periodic Oscillations and Waves. New York: Springer, 2009 |
[6] | Esteban M J. A remark on the existence of positive periodic solutions of superlinear parabolic problems. Proceeding of the American Mathematical Society, 1988, 102(1): 131-136 |
[7] | Esteban M J. On periodic solutions of superlinear parabolic problems. Transactions of the American Mathematical Society, 1986, 293(1): 171-189 |
[8] | Evans L C. Partial Differential Equations, Providence, RI: American Mathmatical Society, 2010 |
[9] | Fink A M. Almost Periodic Differential Equations, Berlin: Springer-Verlag, 1974 |
[10] | Fréchet M. Les fonctions asymptotiquement presque-périodiques. Revue Sei, 1941, 79: 341-354 |
[11] | Fréchet M. Les fonctions asymptotiquement presque-périodiques continues. CR Acad Sei Paris, 1941, 213: 520-522 |
[12] | Furumouchi T, Naito T, Minh N V. Boundedness and almost periodicity of solutions of partial functional differential equations. Journal of Differential Equations, 2002, 180(1): 125-152 |
[13] | Hu Z, Mingarelli A B. Almost periodicity of solutions for almost periodic evolutions equations equations. Differential Intergral Equations, 2005, 18(4): 469-480 |
[14] | Nee J. Almost periodic solutions to systems of parabolic equations. Journal of Applied Mathematics and Stochastic Analysis, 1994, 7(4): 581-586 |
[15] | Ji S, Yin J, Li Y. Positive periodic solutions of the weighted p-Laplacian with nonlinear sources. Discrete and Continuous Dynamical Systems, 2018, 38(5): 2411-2439 |
[16] | Levitan B M, Zhikov V V. Almost Periodic Functions and Differential Equations. translated from the Russian by L W Longdon. Cambridge-NewYork: Cambridge University Press, 1983 |
[17] | Quittner P. Multiple equilibria, periodic solutions and a priori bounds for solutions in superlinear parabolic problems. Nonlinear Differential Equations & Applications NoDEA, 2004, 11(2): 237-258 |
[18] | Rao S. On differential operators with Bohr-Neugebauer type property. Journal of Differential Equations, 1973, 13(3): 490-494 |
[19] | Rossi L. Liouville type results for periodic and almost periodic linear operators. Annales de l'Institut Henri Poincaré C, Analyse non Linéaire, 2009, 26(6): 2481-2502 |
[20] | Schmitt K, Ward J. Almost periodic solutions of nonlinear second order differential equations. Results in Mathematics, 1992, 21(1/2): 190-199 |
[21] | Wang Y, Yin J, Wu Z. Periodic solutions of evolution p-Laplacian equations with nonlinear sources. Journal of Mathematical Analysis & Applications, 1998, 219(1): 76-96 |
[22] | Xie Y, Lei P. Almost periodic solutions of sublinear heat equations. Proceeding of the American Mathematical Society, 2017, 146(1): 233-245 |
[23] | Xie Y, Lei P. On global boundedness, stability and almost periodicity of solutions for heat equations. Funkcialaj Ekvacioj, 2019, 62(2): 191-208 |
[24] | Xie Y, Lei P, Yin J. Boundedness and stability of global solutions for some superlinear and nonautonomous heat equations. J Differential Equations, 2023, 370: 167-201 |
[25] | Yang Y. Almost periodic solutions of nonlinear parabolic equation. Bulletin of the Australian Mathematical Society, 1988, 38(2): 231-238 |
[26] | Yin J, Jin C. Periodic solutions of the evolutionary p-Laplacian with nonlinear sources. Journal of Mathematical Analysis & Applications, 2010, 368(2): 604-622 |
[27] | Yoshizawa T, Singh V. Stability theory and the existence of periodic solutions and almost periodic solutions. IEEE Transactions on Systems Man & Cybernetics, 1979, 9(5): 314-314 |
[28] | Zhang C. Almost Periodic Type Functions and Ergodicity. Beijing: Science Press, 2003 |
[29] | Zheng Z, Ding H, N'Guérékata G M. The space of continuous periodic functions is a set of first category in AP(X). J Funct Spaces, 2013, 2013(1): 275702 |
[1] | Tong Tang,Cong Niu. Global Existence of Weak Solutions to the Quantum Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2022, 42(2): 387-400. |
[2] | Kexin Luo,Shaoyong Lai. Global Weak Solutions to a High-Order Camass-Holm Type Equation [J]. Acta mathematica scientia,Series A, 2022, 42(2): 427-441. |
[3] | Daoguo Zhou. Regularity Criteria in Lorentz Spaces for the Three Dimensional Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1396-1404. |
[4] | Weilin Zou,Yuanchun Ren,Meipin Xiao. Regularizing Effect of L1 Interplay Between Coefficients in Nonlinear Degenerate Elliptic Equations [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1405-1414. |
[5] | Jiao Luo,Qian Qi,Hong Luo. Weak Solutions to Higher-Order Anisotropic Cahn-Hilliard-Navier-Stokes Systems [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1599-1611. |
[6] | Kai Li,Han Yang,Fan Wang. Study on Weak Solution and Strong Solution of Incompressible MHD Equations with Damping in Three-Dimensional Systems [J]. Acta mathematica scientia,Series A, 2019, 39(3): 518-528. |
[7] | Zhang Shengui. Infinitely Many Solutions for a Bi-Nonlocal Problem Involving p(x)-Laplacian-Like Operator [J]. Acta mathematica scientia,Series A, 2018, 38(3): 514-526. |
[8] | Xing Chao, Ren Mengzhang, Luo Hong. The Existence of Global Weak Solutions to Thermohaline Circulation Equations [J]. Acta mathematica scientia,Series A, 2018, 38(2): 284-290. |
[9] | Du Guangwei, Niu Pengcheng. Higher Integrability for Very Weak Solutions of Obstacle Problems to Nonlinear Subelliptic Equations [J]. Acta mathematica scientia,Series A, 2017, 37(1): 122-145. |
[10] | LIU Ying, LI Jia. L2 Decay for Weak Solutions of the MHD Equations in Half Space [J]. Acta mathematica scientia,Series A, 2010, 30(4): 1166-1175. |
[11] | ZHENG Shen-Zhou, WANG Xi-Fen. Regularity of Very Weak Solutions for a Class of Quasilinear Subelliptic Equations [J]. Acta mathematica scientia,Series A, 2010, 30(2): 432-439. |
[12] |
Ran Qikang.
Existence of Weak Solutions to a Class of Elliptic Stochastic Partial Differential Equations [J]. Acta mathematica scientia,Series A, 2008, 28(2): 320-328. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 196
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 135
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|