[1] Adachi S, Watanabe T.Uniqueness of the ground state solutions for quasilinear Schrödinger equations. Nonlinear Anal, 2012, 75(2): 819-833 [2] Agueh M.Sharp Gagliardo-Nirenberg inequalities via $p$-Laplacian type equations. NoDEA Nonlinear Differential Equations Appl, 2008, 15: 457-472 [3] Ambrosetti A, Wang Z Q.Positive solutions to a class of quasilinear elliptic equations on $\mathbb R$. Discrete Contin Dyn Syst, 2003, 9(1): 55-68 [4] Badiale M, Serra E.Semilinear Elliptic Equations for Beginners: Existence Results via the Variational Approach. London: Springer-Verlag, 2011 [5] Bartsch T, Jeanjean L, Soave N.Normalized solutions for a system of coupled cubic Schrödinger equations on $\mathbb R^3$. J Math Pures Appl, 2016, 106(4): 583-614 [6] Bartsch T, Soave N.A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems. J Funct Anal, 2017, 272(12): 4998-5037 [7] Bartsch T, Soave N. Multiple normalized solutions for a competing system of Schrödinger equations. Calc Var Partial Differential Equations, 2019, 58: Article 22 [8] Bartsch T, Zhong X, Zou W.Normalized solutions for a coupled Schrödinger system. Math Ann, 2021, 380: 1713-1740 [9] Brézis H, Lieb E.A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88(3): 486-490 [10] Brézis H, Nirenberg L.Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun Pure Appl Math, 1983, 36(4): 437-77 [11] Brizhik L, Eremko A, Piette B, Zahrzewski W J.Electron self-trapping in a discrete two-dimensional lattice. Phys D, 2001, 159(1/2): 71-90 [12] Brizhik L, Eremko A, Piette B, Zahkrzewski W J.Static solutions of a D-dimensional modified nonlinear Schrödinger equation. Nonlinearity, 2003, 16(4): 1481-1497 [13] Chen Z, Zou W.Normalized solutions for nonlinear Schrödinger systems with linear couples. J Math Anal Appl, 2021, 499(1): 125013 [14] Chen Z, Zhong X, Zou W.Normalized solutions for nonlinear Schrödinger systems with special mass-mixed terms: The linear couple case. arXiv preprint arXiv:2107.12564, 2021 [15] Colin M, Jeanjean L.Solutions for a quasilinear Schrödinger equation: a dual approach. Nonlinear Anal, 2004, 56(2): 213-226 [16] Colin M, Jeanjean L, Squassina M.Stability and instability results for standing waves of quasi-linear Schrödinger equations. Nonlinearity, 2010, 23(6): 1353-1385 [17] Dancer N, Wang K, Zhang Z.The limit equation for the Gross-Pitaevskii equations and S Terracini's conjecture. J Funct Anal, 2012, 262(3): 1087-1131 [18] Gladiali F, Squassina M.Uniqueness of ground states for a class of quasi-linear elliptic equations. Adv Nonlinear Anal, 2012, 1: 159-179 [19] Gou T, Jeanjean L.Multiple positive normalized solutions for nonlinear Schrödinger systems. Nonlinearity, 2018, 31(5): 2319-2345 [20] Jeanjean L.On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\mathbb R^N$. Proc Roy Soc Edinburgh Sect A, 1999, 129(4): 787-809 [21] Jeanjean L, Luo T.Sharp non-existence results of prescribed $L^2$-norm solutions for some class of Schrödinger-Poisson and quasi-linear equations. Z Angew Math Phys, 2013, 64(4): 937-954 [22] Jeanjean L, Luo T, Wang Z Q.Multiple normalized solutions for quasi-linear Schrödinger equations. J Differential Equations, 2015, 259(8): 3894-3928 [23] Kurihara S.Large-amplitude quasi-solitons in superfluid films. J Phys Soc Japan, 1981, 50(10): 3262-3267 [24] Li H, Zou W.Normalized ground states for semilinear elliptic systems with critical and subcritical nonlinearities. J Fixed Point Theory Appl, 2021, 23: 1-30 [25] Li H, Zou W.Quasilinear Schrödinger equations: ground state and infinitely many normalized solutions. Pacific J Math, 2023, 322(1): 99-138 [26] Lieb E, Loss M.Analysis, Graduate Studies in Mathematics. Rhode Island: American Mathematical Society, 2001 [27] Liu J, Wang Y, Wang Z Q.Solutions for quasilinear Schrödinger equations via the Nehari method. Comm Partial Differential Equations, 2004, 29(5/6): 879-901 [28] Moroz V, Schaftingen J.Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J Funct Anal, 2013, 265(2): 153-184 [29] Noris B, Tavares H, Verzini G.Existence and orbital stability of the ground states with prescribed mass for the $L^2$-critical and supercritical NLS on bounded domains. Anal PDE, 2015, 7(8): 1807-1838 [30] Noris B, Tavares H, Verzini G. Normalized solutions for nonlinear Schrödinger systems on bounded domains. Nonlinearity, 2019, 32(3): Article 1044 [31] Noris B, Tavares H, Verzini G.Stable solitary waves with prescribed $L^2$-mass for the cubic Schrödinger system with trapping potentials. Discrete Contin Dyn Syst, 2015, 35: 6085-6112 [32] Terracini S, Verzini G, Noris B, Tavares H.Convergence of minimax structures and continuation of critical points for singularly perturbed systems. J Eur Math Soc, 2012, 14(4): 1245-1273 [33] Pellacci B, Pistoia A, Vaira G, Verzini G.Normalized concentrating solutions to nonlinear elliptic problems. J Differential Equations, 2021, 275: 882-919 [34] Perez-Garcia V, Michinel H, Cirac J, et al. %Lewenstein M, Zoller P. Dynamics of Bose-Einstein condensates: Variational solutions of the Gross-Pitaevskii equations. Phys Rev A, 1997, 56(2): Article 1424 [35] Pierotti D, Verzini G.Normalized bound states for the nonlinear Schrödinger equation in bounded domains. Calc Var Partial Differential Equations, 2017, 56: 1-27 [36] Poppenberg M, Schmitt K, Wang Z Q.On the existence of soliton solutions to quasilinear Schrödinger equations. Calc Var Partial Differential Equations, 2002, 14(3): 329-344 [37] Selvitella A.Uniqueness and nondegeneracy of the ground state for a quasilinear Schrödinger equation with a small parameter. Nonlinear Anal, 2011, 74(5): 1731-1737 [38] Serrin J, Tang M.Uniqueness of ground states for quasilinear elliptic equations. Indiana Univ Math J, 2000, 49: 897-923 [39] Severo U.Symmetric and nonsymmetric solutions for a class of quasilinear Schrödinger equations. Adv Nonlinear Stud, 2008, 8(2): 375-389 [40] Soave N.Normalized ground states for the NLS equation with combined nonlinearities. J Differential Equations, 2020, 269(9): 6941-6987 [41] Soave N.Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical case. J Funct Anal, 2020, 279(6): 108610 [42] Soave N, Tavares H, Terracini S, Zilio A.Hölder bounds and regularity of emerging free boundaries for strongly competing Schrödinger equations with nontrivial grouping. Nonlinear Anal, 2016, 138: 388-427 |