Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (1): 269-278.
Previous Articles Next Articles
Wu Ziyi1,2,Yang Junyuan1,2,*()
Received:
2024-01-16
Revised:
2024-04-09
Online:
2025-02-26
Published:
2025-01-08
Supported by:
CLC Number:
Wu Ziyi, Yang Junyuan. Study on Parameter Identifiability of an Age-Structured Tuberculosis Model with Relapse[J].Acta mathematica scientia,Series A, 2025, 45(1): 269-278.
[1] | 世界卫生组织.[2022-10-27]. https://www.who.int/zh/news-room/fact-sheets/detail/tuberculosis. |
WHO World Health Organization. [2022-10-27]. https://www.who.int/zh/news-room/fact-sheets/detail/tuberculosis. | |
[2] | 中国疾病预防控制中心. [2022-05-26]. https://www.chinacdc.cn/jkzt/crb/zl/jhb/jszl-2221. |
Chinese Center for Disease Control and Prevention. [2022-05-26]. https://www.chinacdc.cn/jkzt/crb/zl/jhb/jszl-2221. | |
[3] |
Van den Driessche P, Zou X. Modeling relapse in infectious diseases. Mathematical Biosciences, 2007, 207(1): 89-103
pmid: 17112547 |
[4] |
Wallis R S. Mathematical models of tuberculosis reactivation and relapse. Frontiers in Microbiology, 2016, 7: Article 669
doi: 10.3389/fmicb.2016.00669 pmid: 27242697 |
[5] | Liu L, Zhang J, Li Y, Liu X. On the global stability of an age-structured tuberculosis transmission model with relapse. Mathematical Methods in the Applied Sciences, 2022, 45(9): 5622-5630 |
[6] |
Miao H, Xia X, Perelson A S, Wu H. On identifiability of nonlinear ODE models and applications in viral dynamics. SIAM Review, 2011, 53(1): 3-39
pmid: 21785515 |
[7] | Cao H, Gao X, Yan D, Zhang S. The dynamics of an age-structured TB transmission model with relapse. Mathematical Methods in the Applied Sciences, 2020, 43(6): 3807-3826 |
[8] |
Tuncer N, Gulbudak H, Cannataro V L, Martcheva M. Structural and practical identifiability issues of immuno-epidemiological vector-host models with application to rift valley fever. Bulletin of Mathematical Biology, 2016, 78: 1796-1827
pmid: 27651156 |
[9] |
Guillén-González F, Sevillano-Castellano E, Suárez A. Fitting parameters and therapies of ODE tumor models with senescence and immune system. Journal of Mathematical Biology, 2023, 87(5): Article 67
doi: 10.1007/s00285-023-02000-9 pmid: 37805974 |
[10] | 国家统计局. [2017]. http://www.stats.gov.cn/tjst/ndsj/. |
National Bureau of Statistics. [2017]. http://www.stats.gov.cn/tjst/ndsj/. | |
[11] | 全国结核病学抽样调查技术指导组. 2000年全国结核病流行病学抽样调查报告. 中国防痨杂志, 2022, 4: 65-66 |
National Technical Steering Group of the Epidemiological Sampling Survey for Tuberculosis. Report on nationwide random survey for the epidemiology of tuberculosis in 2000. Chinese Journal of Tuberculosis Prevention, 2002, 4: 65-66 | |
[12] | 全球结核病报告. [2018]. http://www.who.int/tb/publications/global{-}report/en/. |
Global Tuberculosis Report. [2018]. http://www.who.int/tb/publications/global{-}report/en/. | |
[13] |
Tuncer N, Timsina A, Nuno M, et al. Parameter identifiability and optimal control of an SARS-CoV-2 model early in the pandemic. Journal of Biological Dynamics, 2022, 16(1): 412-438
doi: 10.1080/17513758.2022.2078899 pmid: 35635313 |
[14] | Renardy M, Kirschner D, Eisenberg M. Structural identifiability analysis of age-structured PDE epidemic models. Journal of Mathematical Biology, 2022, 84(1): Article 9 |
[15] |
Gulbudak H, Qu Z, Milner F, Tuncer N. Sensitivity analysis in an immuno-epidemiological vector-host model. Bulletin of Mathematical Biology, 2022, 84(2): Article 27
doi: 10.1007/s11538-021-00979-0 pmid: 34982249 |
[16] | 邓萌, 徐瑞. 一类具有 CTL 免疫反应和免疫损害的 HIV 感染动力学模型的稳定性分析. 数学物理学报, 2022, 42A(5): 1592-1600 |
Deng M, Xu R. Stability analysis of an HIV infection dynamic model with CTL immune response and immune impairment. Acta Math Sci, 2022, 42A(5): 1592-1600 | |
[17] | 张洪铎. 个体化治疗耐多药肺结核失败的影响因素分析. 临床合理用药杂志, 2017, 15: 108-109 |
Zhang H Z. Analysis of the influencing factors of individualized treatment failure for multidrug-resistant pulmonary tuberculosis. Journal of Clinical Rational Drug Use, 2017, 15: 108-109 | |
[18] | 张雪元. 利福喷丁与利福平在肺结核治疗中的药效比较及安全性分析. 中国医药指南, 2021, 1: 36-37 |
Zhang X Y. Comparison of efficacy and safety analysis of rifampicin and rifampicin in the treatment of pulmonary tuberculosis. Guide of China Medicine, 2021, 1: 36-37 |
[1] |
He Yaxing, Tang Yinghui, Liu Qionglin.
Analysis of |
[2] | Tengfei Wang,Tao Feng,Xinzhu Meng. Complex Dynamics and Stochastic Sensitivity Analysis of a Predator-Prey Model with Crowley-Martin Type Functional Response [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1192-1203. |
[3] | Liu Huan, Wu Qiongli, Cournède Paul-Henry. Research on the Effects of Different Sampling Algorithm on Sobol Sensitivity Analysis [J]. Acta mathematica scientia,Series A, 2018, 38(2): 372-384. |
[4] | Wei Aiju, Zhang Xinjian, Wang Junyi, Li Kezan. Dynamics Analysis of an Ebola Epidemic Model [J]. Acta mathematica scientia,Series A, 2017, 37(3): 577-592. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 198
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 107
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|