Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (1): 279-294.
Previous Articles Next Articles
Received:
2024-02-26
Revised:
2024-04-30
Online:
2025-02-26
Published:
2025-01-08
Supported by:
CLC Number:
Wu Peng, Fang Cheng. Dynamical Analysis of an Age-Structured HIV Latent Model with Nonlocal Dispersal and Spatial Heterogeneity[J].Acta mathematica scientia,Series A, 2025, 45(1): 279-294.
[1] | Levi J. HIV and the Pathogenesis of AIDS. Washington, D C: ASM Press, 2007 |
[2] | 邓萌, 徐瑞. 一类具有 CTL 免疫反应和免疫损害的 HIV 感染动力学模型的稳定性分析. 数学物理学报, 2022, 42A(5): 1592-1600 |
Deng M, Xu R. Stability analysis of an HIV infection dynamic model with CTL immune response and immune impairment. Acta Math Sci, 2022, 42A(5): 1592-1600 | |
[3] | 娄洁, 马之恩, 邵一鸣. HIV-1 的表型间变异与免疫因子相互作用的动力学模型. 数学物理学报, 2007, 27A(5): 898-906 |
Lou J, Ma Z, Shao Y M. Modelling the interactions between the HIV-1 phenotypes and the cytokines. Acta Math Sci, 2007, 27A(5): 898-906 | |
[4] | Wu P, Zhao H. Dynamics of an HIV infection model with two infection routes and evolutionary competition between two viral strains. Appl Math Model, 2020, 84: 240-264 |
[5] | Rong L, Feng Z, Perelson A S. Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy. SIAM J Appl Math, 2007, 67(3): 731-756 |
[6] | Wang W, Wang X N, Feng Z S. Time periodic reaction-diffusion equations for modeling 2-LTR dynamics in HIV-infected patients. Nonlinear Anal Real World Appl, 2021, 57: 103184 |
[7] | Wu P, Zheng S, He Z R. Evolution dynamics of a time-delayed reaction-diffusion HIV latent infection model with two strains and periodic therapies. Nonlinear Anal Real World Appl, 2022, 67: 103559 |
[8] | Vaidya N K, Rong L. Modeling pharmacodynamics on HIV latent infection: choice of drugs is key to successful cure via early therapy. SIAM J Appl Math, 2017, 77(5): 1781-1804 |
[9] | UNAIDS. AIDS by the numbers in 2020. [2022] URL https://www.unaids.org/en |
[10] | 吴鹏, 何泽荣. 具有非局部感染和周期治疗的 HIV 感染模型的时空动力学分析. 数学物理学报, 2024, 44A(1): 209-226 |
Wu P, He Z R. Spatial-temporal dynamics of HIV infection model with periodic antiviral therapy and nonlocal infection. Acta Math Sci, 2024, 44A(1): 209-226 | |
[11] | 吴鹏, 赵洪涌. 基于空间异质反应扩散 HIV 感染模型的最优治疗策略. 应用数学学报, 2022, 45(5): 752-766 |
Wu P, Zhao H Y. Optimal treatment strategies for a reaction-dffusion HIV infection model with spatial heterogeneity. Acta Mathematicae Applicatae Sinica, 2022, 45(5): 752-766 | |
[12] | 吴鹏, 王秀男, 何泽荣. 一类具有 Dirichlet 边界条件的年龄-空间结构 HIV/AIDS 传染病模型的动力学分析. 数学物理学报, 2023, 43A(3): 970-984 |
Wu P, Wang X N, He Z R. Dynamical analysis of an age-space structured HIV/AIDS model with homogeneous Dirichlet boundary condition. Acta Math Sci, 2023, 43A(3): 970-984 | |
[13] | Wang X, Yang J. Dynamics of a nonlocal dispersal foot-and-mouth disease model in a spatially heterogeneous environment. Acta Math Sci, 2021, 41(2): 552-572 |
[14] | Yang J, Gong M, Sun G. Asymptotical profiles of an age-structured foot-and-mouth disease with nonlocal diffusion on a spatially heterogeneous environment. J Differential Equations, 2023, 377: 71-112 |
[15] | Webb G F. Theory of Nonlinear Age-Dependent Population Dynamics. New York: Marcel Dekker Inc, 1985 |
[16] | Inaba H. Age-Structured Population Dynamics in Demography and Epidemiology. Singapore: Springer, 2017 |
[17] | Olsen H, Holden H. The Kolmogorov-Reisz compactness theorem. Expo Math, 2010, 28(4): 385-394 |
[18] | Gaecia-Melián J, Rossi J D. On the principal eigenvalue of some nonlocal diffusion problems. J Differential Equations, 2009, 246(1): 21-38 |
[19] | Burton T A. A fixed-point theorem of Krasnoselskii. Appl Math Lett, 1998, 11(1): 85-88 |
[1] | Yang Yongli, Yang Yunrui. Traveling Wave Solutions to a Cholera Epidemic System with Spatio-Temporal Delay and Nonlocal Dispersal [J]. Acta mathematica scientia,Series A, 2025, 45(1): 110-135. |
[2] | Wu Peng, Fang Cheng. Dynamical Analysis and Numerical Simulation of a Syphilis Epidemic Model with Heterogeneous Spatial Diffusion [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1352-1367. |
[3] | Yin Ruixia, Wang Zedong, Zhang Long. A Periodic Stage Structure Single-Population Model with Infinite Delay and Feedback Control [J]. Acta mathematica scientia,Series A, 2024, 44(4): 994-1011. |
[4] | Xu Rui, Zhou Kaijuan, Bai Ning. A with-in Host HIV-1 Infection Dynamics Model Based on Virus-to-cell Infection and Cell-to-cell Transmission [J]. Acta mathematica scientia,Series A, 2024, 44(3): 771-782. |
[5] | Wu Peng, He Zerong. Spatio-temporal Dynamics of HIV Infection Model with Periodic Antiviral Therapy and Nonlocal Infection [J]. Acta mathematica scientia,Series A, 2024, 44(1): 209-226. |
[6] | Zhong Yi, Wang Yi, Jiang Tianhe. Dynamic Analysis and Optimal Control of an SIAQR Transmission Model with Asymptomatic Infection and Isolation [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1914-1928. |
[7] | Wu Peng,Wang Xiunan,He Zerong. Dynamical Analysis of an Age-Space Structured HIV/AIDS Model with Homogeneous Dirichlet Boundary Condition [J]. Acta mathematica scientia,Series A, 2023, 43(3): 970-984. |
[8] | Zhenxiang Hu,Linfei Nie. Analysis of a Reaction-Diffusion Epidemic Model with Horizontal Transmission and Environmental Transmission [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1849-1860. |
[9] | Yu Yang. Traveling Wave of a Nonlocal Dispersal SIR Model [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1409-1415. |
[10] | Meng Deng,Rui Xu. Stability Analysis of an HIV Infection Dynamic Model with CTL Immune Response and Immune Impairment [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1592-1600. |
[11] | Kai Wang,Hongyong Zhao. Traveling Wave of a Reaction-Diffusion Dengue Epidemic Model with Time Delays [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1209-1226. |
[12] | Tailei Zhang,Junli Liu,Mengjie Han. Dynamics of an Anthrax Epidemiological Model with Time Delay and Seasonality [J]. Acta mathematica scientia,Series A, 2022, 42(3): 851-866. |
[13] | Yu Yang. Global Attractivity of a Nonlocal Delayed and Diffusive SVIR Model [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1864-1870. |
[14] | Dandan Sun,Yingke Li,Zhidong Teng,Tailei Zhang. Analysis of the Stability for Measles Epidemic Model with Age-Structured [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1950-1968. |
[15] | Lixiang Feng,Defen Wang. Global Stability of an Epidemic Model with Quarantine and Incomplete Treatment [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1235-1248. |
|