Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (1): 203-213.
Previous Articles Next Articles
Hu Bingbing1(),Gao Jianfang1,2,*(
)
Received:
2023-05-22
Revised:
2024-06-06
Online:
2025-02-26
Published:
2025-01-08
Supported by:
CLC Number:
Hu Bingbing, Gao Jianfang. Oscillation Analysis of Numerical Solutions for a Class of Nonlinear Delay Differential Equations with Variable Coefficients[J].Acta mathematica scientia,Series A, 2025, 45(1): 203-213.
[1] |
Mackey M C, Glass L. Oscillation and chaos in physiological control systems. Science, 1977, 197(4300): 287-289
doi: 10.1126/science.267326 pmid: 267326 |
[2] | Gopalsamy K, Zhang B G. On delay differential equations with impulses. J Math Anal Appl, 1989, 139(1): 110-121 |
[3] | Györi I, Ladas G. Oscillation Theory of Delay Equations with Applications. Oxford: Clarendon press, 1991 |
[4] | Agarwal R P, Karakoc F. A survey on oscillation of impulsive delay differential equations. Comput Math Appl, 2010, 60(6): 1648-1685 |
[5] | Agarwal R P, Berezansky L, Braverman E, Domoshnitsky A. Nonoscillation Theory of Functional Differential Equations with Applications. New York: Springer, 2012 |
[6] | Dong J G. Oscillation behavior of second order nonlinear neutral differential equations with deviating arguments. Comput Math Appl, 2010, 59(12): 3710-3717 |
[7] | Chatzarakis G E, Dorociaková B, Olach R. An oscillation criterion of linear delay differential equations. Adv Differ Equ, 2021, 2021: Article 85 |
[8] | Salah H, Moaaz O, Cesarano C, Elabbasy E M. Oscillation of higher-order canonical delay differential equations: comparison theorems. Phys Scr, 2023, 98(2): 024003 |
[9] | Saranya K, Piramanantham V, Thandapani E. Oscillation results for third-order semi-canonical quasi-linear delay differential equations. Nonautonomous Dynamical Systems, 2021, 8(1): 228-238 |
[10] |
Shi S, Han Z. Oscillation of second-order half-linear neutral advanced differential equations. Commun Appl Math Comput, 2021, 3: 497-508
doi: 10.1007/s42967-020-00092-4 |
[11] | Zhuang Z, Wang Q, Wu H. A new oscillation criterion for first-order delay differential equations by iteration. Appl Math Comput, 2021, 390: 125632 |
[12] | Grace S R, Chhatria G N. Oscillation of higher order nonlinear dynamic equations with a nonlinear neutral term. Math Methods Appl Sci, 2023, 46(2): 2373-2388 |
[13] | Shoukaku Y. Oscillation of first order neutral differential equations with delay. Differ Equ Dyn Syst, 2023, 31(2): 283-288 |
[14] | Gopalsamy K. Stability and Oscillation in Delay Differential Equations of Population Dynamics. Dordrecht: Springer, 1992 |
[15] | Berezansky L, Braverman E. On oscillation of a logistic equation with several delays. J Comput Appl Math, 2000, 113(1/2): 255-265 |
[16] |
Xu C J, Li P L. Oscillations for a delayed predator-prey model with Hassell-Varley-Type functional response. CR Biol, 2015, 338(4): 227-240
doi: 10.1016/j.crvi.2015.01.002 pmid: 25836016 |
[17] | Gao J F, Song M H, Liu M Z. Oscillation analysis of numerical solutions for nonlinear delay differential equations of population dynamics. Math Model Anal, 2011, 16(3): 365-375 |
[18] | 王琦, 汪小明. 单物种人口模型指数隐式 Euler 方法的振动性. 计算数学, 2015, 37(1): 59-66 |
Wang Q, Wang X M. Oscillations of exponential implicit Euler method for a single species population model. Math Numer Sin, 2015, 37(1): 59-66 | |
[19] | Gao J F, Song F Y. Oscillation analysis of numerical solutions for nonlinear delay differential equations of hematopoiesis with unimodal production rate. Appl Math Comput, 2015, 264: 72-84 |
[20] | Wang Y Z, Gao J F. Oscillation analysis of numerical solutions for delay differential equations with real coefficients. J Comput Appl Math, 2018, 337: 73-86 |
[21] | Wang Q, Wen J C. Oscillations of numerical solution for nonlinear delay differential equations in food limited population model. Math Appl, 2013, 26(2): 360-366 |
[22] |
宋福义, 高建芳. 一类非线性延迟微分方程数值解的振动性分析. 计算数学, 2015, 37(4): 425-438
doi: 10.12286/jssx.2015.4.425 |
Song F Y, Gao J F. Oscillation analysis of numerical solutions for a kind of nonlinear delay differential equation. Math Numer Sin, 2015, 37(4): 425-438
doi: 10.12286/jssx.2015.4.425 |
|
[23] | 闫朝琳, 高建芳. 混合型脉冲微分方程的数值振动性分析. 数学物理学报, 2020, 40A(4): 993-1006 |
Yan Z L, Gao J F. Numerical oscillation analysis of the mixed type impulsive differential equation. Acta Math Sci, 2020, 40A(4): 993-1006 | |
[24] | Berezansky L, Braverman E. Mackey-Glass model of hematopoiesis with monotone feedback revisited. Appl Math Comput, 2013, 219(9): 4892-4907 |
[1] | Zheng Lanling, Ding Huisheng. Almost Automorphy for a Class of Delay Differential Equations with Non-densely Defined Operators on Banach Spaces [J]. Acta mathematica scientia,Series A, 2024, 44(2): 361-375. |
[2] | Ying Liu,Jianfang Gao. Oscillation Analysis of a Kind of Systems with Piecewise Continuous Arguments [J]. Acta mathematica scientia,Series A, 2022, 42(3): 826-838. |
[3] | Ping Zhang,Jiashan Yang,Guijiang Qin. Oscillation of Second-Order Nonlinear Nonautonomous Delay Dynamic Equations on Time Scales [J]. Acta mathematica scientia,Series A, 2022, 42(3): 839-850. |
[4] | Wenjuan Li,Huo Tang,Yuanhong Yu. Oscillation Criterion for Second Order Damped Differential Equation with a Sublinear Neutral Term [J]. Acta mathematica scientia,Series A, 2022, 42(1): 58-69. |
[5] | Zhiyu Zhang,Cheng Zhao,Yuyu Li. Oscillation of Second Order Delay Dynamic Equations with Superlinear Neutral Terms on Time Scales [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1838-1852. |
[6] | Guijiang Qin,Jiashan Yang. Oscillation Theorems of Second-Order Variable Delay Dynamic Equations with Quasilinear Neutral Term [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1492-1503. |
[7] | Zhiyu Zhang. Oscillation Criteria of Second-Order Generalized Emden-Fowler Delay Differential Equations with a Sub-Linear Neutral Term [J]. Acta mathematica scientia,Series A, 2021, 41(3): 811-826. |
[8] | Zhiyu Zhang,Feifei Song,Tongxing Li,Yuanhong Yu. Oscillation Criteria of Second Order Nonlinear Neutral Emden-Fowler Differential Equations with Damping [J]. Acta mathematica scientia,Series A, 2020, 40(4): 934-946. |
[9] | Zhaolin Yan,Jianfang Gao. Numerical Oscillation Analysis of the Mixed Type Impulsive Differential Equation [J]. Acta mathematica scientia,Series A, 2020, 40(4): 993-1006. |
[10] | Liping Luo,Zhenguo Luo,Yunhui Zeng. Oscillation Conditions of Certain Nonlinear Impulsive Neutral Parabolic Distributed Parameter Systems [J]. Acta mathematica scientia,Series A, 2020, 40(3): 784-795. |
[11] | Jimeng Li,Jiashan Yang. Philos-Type Criteria for Second-Order Delay Differential Equations with Nonlinear Neutral Term [J]. Acta mathematica scientia,Series A, 2020, 40(1): 169-186. |
[12] | Yanfang Mei,Youjun Wang. Three Types of Solutions for a Class of Nonlinear Schrödinger Equations [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1087-1093. |
[13] | Jimeng Li. Oscillation Analysis of Second-Order Generalized Emden-Fowler-Type Delay Differential Equations [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1041-1054. |
[14] | Zhiyu Zhang,Yuanhong Yu,Shuping Li,Shizhu Qiao. Oscillation of Second Order Nonlinear Differential Equations with Neutral Delay [J]. Acta mathematica scientia,Series A, 2019, 39(4): 797-811. |
[15] | Wenjuan Li,Shuhai Li,Yuanhong Yu. Oscillation of Second Order Nonlinear Neutral Differential Equations with Distributed Delay [J]. Acta mathematica scientia,Series A, 2019, 39(4): 812-822. |
|