Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (1): 214-235.
Previous Articles Next Articles
Received:
2024-01-10
Revised:
2024-04-28
Online:
2025-02-26
Published:
2025-01-08
Supported by:
CLC Number:
Shen Zongshan. Stability of Error Bounds for Multifunctions[J].Acta mathematica scientia,Series A, 2025, 45(1): 214-235.
[1] | Aubin J P. Set-Valued Analysis. Boston: Birkhäuser, 1999 |
[2] | Auslender A, Teboulle M. Asymptotic Cones and Functions in Optimization and Variational Inequalities. New York: Springer-Verlag, 2003 |
[3] | Aussel D, Daniillids A, Thibault L. Subsmooth sets: functional characterizations and related concepts. Trans Amer Math Soc, 2005, 357(4): 1275-1301 |
[4] | Azé D, Corvellec J N. Characterizations of error bounds for lower semicontinuous functions on metric spaces. ESAIM Control Optim Calc Var, 2004, 10(3): 409-425 |
[5] | Azé D, Corvellec J N. On the sensitivity analysis of Hoffman constants for systems of linear inequalities. SIAM J Optim, 2002, 12(4): 913-927 |
[6] | Beck A, Teboulle M. Convergence rate analysis and error bounds for projection algorithms in convex feasibility problems. Optim Methods Softw, 2003, 18(4): 377-394 |
[7] | Bolte J, Nguyen T P, Peypouquet J, Suter B. From error bounds to the complexity of first-order descent methods for convex functions. Math Program, 2017, 165(2): 471-507 |
[8] | Burke J V, Deng S. Weak sharp minima revisited, part II: application to linear regularity and error bounds. Math Program, 2005, 104: 235-261 |
[9] | Clarke F H. Optimization and Nonsmooth Analysis. New York: Wiley, 1990 |
[10] | Dontchev A L, Rockafellar R T. Regularity and conditioning of solution mappings in variational analysis. Set-Valued Analysis, 2004, 12(1/2): 79-109 |
[11] | Drusvyatskiy D, Ioffe A D, Lewis A S. Nonsmooth optimization using Taylor-like models: error bounds, convergence, and termination criteria. Math Program, 2021, 185(2): 357-383 |
[12] | Drusvyatskiy D, Ioffe A D, Lewis A S. Transversality and alternating projections for nonconvex sets. Found Comput Math, 2015, 15(6): 1637-1651 |
[13] | Ekeland I. On the variational principle. J Math Anal Appl, 1974, 47(2): 324-353 |
[14] | Hoffman A. On approximate solutions of systems of linear inequalities. Journal of Research of the National Bureau of Standards, Section B, Mathematical Sciences, 1952, 49(4): 263-265 |
[15] | Ioffe A D. Metric regularity and subdifferential calculus. Russ Math Surv, 2000, 55(3): 501-558 |
[16] | Kruger A Y, López M A, Théra M A. Perturbation of error bounds. Math Program, 2018, 168(2): 533-554 |
[17] | Li M H, Meng K W, Yang X Q. On error bound moduli for locally Lipschitz and regular functions. Math Program, 2018, 171(1/2): 463-487 |
[18] | Li G, Mordukhovich B S, Nghia T T A, Pham T S. Error bounds for parametric polynomial systems with applications to higher-order stability analysis and convergence rates. Math Program, 2018, 168(1/2): 313-346 |
[19] | Luo X D, Luo Z Q. Extension of Hoffman's error bound to polynomial systems. SIAM J Optim, 1994, 4(2): 383-392 |
[20] | Luo Z Q, Tseng P. Perturbation analysis of a condition number for linear systems. SIAM J Matrix Anal Appl, 1994, 15(2): 636-660 |
[21] | Mordukhovich B S. Variational Analysis and Generalized Differentiation I. Berlin: Springer-Verlag, 2006 |
[22] | Ng K F, Zheng X Y. Characterization of error bounds for convex multifunctions on Banach spaces. Math Oper Res, 2004, 29(1): 45-63 |
[23] | Ng K F, Zheng X Y. Error bounds for lower semicontinuous functions in normed spaces. SIAM J Optim, 2001, 12(1): 1-17 |
[24] | Ngai H V, Kruger A, Théra M. Stability of error bounds for semi-infinite convex constraint systems. SIAM J Optim, 2010, 20(4): 2080-2096 |
[25] | Ngai H V, Théra M. Error bounds for convex differentiable inequality systems in Banach spaces. Math Program, 2005, 104(2/3): 465-482 |
[26] | Ngai H V, Théra M. Error bounds for systems of lower semicontinuous functions in Asplund spaces. Math Program, 2009, 116(1/2): 397-427 |
[27] | Pang J S. Error bounds in mathematical programming. Math Program, 1997, 79(1): 299-332 |
[28] | Shapiro A. Existence and differentiability of metric projections in Hilbert spaces. SIAM J Optim, 1994, 4(1): 130-141 |
[29] | Shapiro A, Al-Khayyal F. First-order conditions for isolated locally optimal solutions. J Optim Theory Appl, 1993, 77(1): 189-196 |
[30] | Shen Z S, Yao J C, Zheng X Y. Calmness and the Abadie CQ for multifunctions and linear regularity for a collection of closed sets. SIAM J Optim, 2019, 29(3): 2291-2319 |
[31] | Wu Z, Ye J J. On error bounds for lower semicontinuous functions. Math Program, 2002, 92(2): 301-314 |
[32] | Zhang B B, Zheng X Y. Well-posedness and generalized metric subregularity with respect to an admissible function. Sci China Math, 2019, 62(4): 809-822 |
[33] | Zheng X Y. Slater condition for tangent derivatives. Math Oper Res, 2022, 47(4): 3282-3303 |
[34] | Zheng X Y, Ng K F. Calmness for L-subsmooth multifunctions in Banach spaces. SIAM J Optim, 2009, 19(4): 1648-1673 |
[35] | Zheng X Y, Ng K F. Perturbation analysis of error bounds for systems of conic linear inequalities in Banach spaces. SIAM J Optim, 2005, 15(4): 1026-1041 |
[36] | Zheng X Y, Ng K F. Stability of error bounds for conic subsmooth inequalities. ESAIM Control Optim Calc Var, 2019, 25: Article 55 |
[37] | Zheng X Y, Wei Z. Perturbation analysis of error bounds for quasi-subsmooth inequalities and semi-infinite constraint systems. SIAM J Optim, 2012, 22(1): 41-65 |
[38] | Zheng X Y, Zhu J X. Generalized metric subregularity and regularity with respect to an admissible function. SIAM J Optim, 2016, 26(1): 535-563 |
[1] | Fan Tiantian, Tang Jingyong, Zhou Jinchuan. Nonmonotone Smoothing Inexact Newton Algorithm for Solving Weighted Horizontal Linear Complementarity Problems [J]. Acta mathematica scientia,Series A, 2025, 45(1): 165-179. |
[2] | CAO Fei-Long, DAI Teng-Hui, ZHANG Yong-Quan. Generalization Bounds of Compressed Regression Learning Algorithm [J]. Acta mathematica scientia,Series A, 2014, 34(4): 905-916. |
[3] | LI Chang-Min, ZHU Dao-Li. ε-exact Penalty for Non-concave Bilevel Programming Problems [J]. Acta mathematica scientia,Series A, 2011, 31(3): 585-593. |
[4] | He Suxiang;Zhang Liwei. A Modified Lagrangian Algorithm for Solving Nonlinear Constrained Optimization Problems [J]. Acta mathematica scientia,Series A, 2006, 26(1): 49-062. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 145
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 61
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|