Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (4): 914-924.
Previous Articles Next Articles
Received:
2023-05-12
Revised:
2024-01-25
Online:
2024-08-26
Published:
2024-07-26
CLC Number:
Li Changhao, Yuan Baoquan. Global Regularity for the 2D Micropolar Rayleigh-Bénard Convection System with Velocity Zero Dissipation and Temperature Fractional Diffusion[J].Acta mathematica scientia,Series A, 2024, 44(4): 914-924.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Bahouri H, Chemin J Y, Danchin R. Fourier Analysis and Nonliear Partial Differential Equations. Berlin: Springer-Verlag, 2011 |
[2] | Chae D H. Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv Math, 2006, 203(2): 497-513 |
[3] | Chen M T. Global well-posedness of the 2D incompressible micropolar fluid flows with partial viscosity and angular viscisiy. Acta Math Sci, 2013, 33B(4): 929-935 |
[4] | Chen Q L, Miao C X, Zhang Z F. A new Bernstein inequality and the 2D dissipative quasigeostrophic equation. Comm Math Phys, 2007, 271: 821-838 |
[5] | Deng L H, Shang H F. Global regularity for the micropolar Rayleigh-Bénard problem with only velocity dissipation. Proc Roy Soc Edinburgh Sect, 2022, 152A(5): 1109-1138 |
[6] | Dong B Q, Li J N, Wu J H. Global well-posedness and large-time decay for the 2D micropolar equations. J Differential Equations, 2017, 262: 3488-3523 |
[7] | Dong B Q, Zhang Z F. Global regularity of the 2D micropolar fluid flows with zero angular viscosity. J Differential Equations, 2010, 349(1): 200-213 |
[8] | Dong Y, Huang Y F, Li L, Lu Q. The regularity criteria of weak solutions to 3D axisymmetric incompressible Boussinesq equations. Acta Math Sci, 2023, 43(6): 2387-2397 |
[9] | Eringen A C. Theory of micropolar fluids. J Math Mech, 1966, 16: 1-18 |
[10] | Galdi G P, Rionero S. A note on the existence and uniqueness of solutions of micropolar fluid equations. Internet J Engrg Sci, 1977, 15(2): 105-108 |
[11] | Hanachi A, Houamed H, Zerguine M. On the global well-posedness of the axisymmetric viscous Boussinesq system in critical Lebesgue spaces. Discrete Contin Dyn Syst, 2020, 40(11): 6473-6506 |
[12] | Hmidi T, Keraani S. On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity. Adv Differential Equations, 2007, 12(4): 461-480 |
[13] | Hmidi T, Keraani S, Rousset F. Global well-posedness for a Boussinesq-Navier-Stokes system with critical dissipation. J Differential Equations, 2010, 249: 2147-2174 |
[14] | Jin X T, Xiao Y L, Y H. Global well-posedness of the 2D Boussinesq equations with partial dissipation. Acta Math Sci, 2022, 42B(4): 1293-1309 |
[15] | Kalita P, Łukaszewicz G. Micropolar meets Newtonian in 3D. The Rayleigh-Bénard problem for large Prandtl numbers. Nonlinearity, 2020, 33: 5686-5732 |
[16] | Kato T, Ponce G. Commutator estimates and the Euler and Navier-Stokes equations. Comm Pure Appl Math, 1988, 41(7): 891-907 |
[17] | Kenig C E, Ponce G, Vega L. Well-posedness of the initial value problem for the Korteweg-de Vries equations. J Amer Math Soc, 1991, 4(2): 323-347 |
[18] | Kalita P, Lange J, Łukaszewicz G. Micropolar meets Newtonian. The Rayleigh-Bénard problem. Physical D, 2019, 392: 57-80 |
[19] | 苗长兴. 调和分析及其在偏微分方程中的应用(第二版). 北京: 科学出版社, 2004 |
Miao C X. Harmonic Analysis and Application to Partial Differential Equations(Second Edition). Beijing: Science Press, 2004 | |
[20] | Ning J. The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations. Comm Math Phys, 2005, 255(1): 161-181 |
[21] | Schonbek M E, Schonbek T. Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows. Discrete Contin Dyn Syst, 2005, 13: 1277-1304 |
[22] | Tarasińska A. Global attractor for heat convection problem in a micropolar fluid. Math Methods Appl Sci, 2005, 29: 1215-1236 |
[23] | Triebel H. Theory of Function Spaces. Basel: Birkhäuser Verlag, 1983 |
[24] | Wang S. Global well-posedness for the 2D micropolar Rayleigh-Bénard convection problem without velocity dissipation. Acta Math Sin, 2021, 37(7): 1053-1065 |
[25] | Wu G, Xue L T. Global well-posedness for the 2D Bénard system with fractional diffusivity and Yudovich's type data. J Differential Equations, 2012, 253: 100-125 |
[26] | Xu F Y, Chi M L. Global regularity for the 2D micropolar Rayleigh-Bénard convection system with the zero diffusivity. Appl Math Lett, 2020, 108: 106508 |
[27] | Ye Z. Some new regularity criteria for the 2D Euler-Boussinesq equations via the temperature. Acta Appl Math, 2018, 157: 141-169 |
[28] | Yuan B Q. On the regularity criteria of weak solutions to the micropolar fluid equations in Lorentz space. Proc Amer Math Soc, 2010, 138: 2025-2036 |
[1] | Sun Xiaochun, Wu Yulian, Xu Gaoting. Global Well-Posedness for the Fractional Navier-Stokes Equations with the Coriolis Force [J]. Acta mathematica scientia,Series A, 2024, 44(3): 737-745. |
[2] | Baoying Du,Jinxing Liu. Global Regularity for the Incompressible 3D Hall-Magnetohydrodynamics with Partial Dissipation [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1754-1767. |
[3] | Jing Yang,Xuemei Deng,Yanping Zhou. Global Regularity for the MHD-Boussinesq System with Fractional Diffusion [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1805-1815. |
[4] | Wenjuan Wang,Mingxiang Xue. Global Regularity of the 2D Tropical Climate Model with Partial Dissipation [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1734-1749. |
[5] | Qianqian Xie,Xiaoping Zhai,Boqing Dong. Optimal Decay for the N-Dimensional Incompressible Oldroyd-B Model Without Damping Mechanism [J]. Acta mathematica scientia,Series A, 2021, 41(3): 762-769. |
[6] | Qiang Li. Global Regularity for the 3D Liquid Crystal Equations with Fractional Diffusion [J]. Acta mathematica scientia,Series A, 2020, 40(4): 918-924. |
[7] | Qiuyue Zhang. Global Regularity for 3D Generalized Oldroyd-B Type Models with Fractional Dissipation [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1125-1135. |
[8] | Hua Qiu,Changping Xie,Shaomei Fang. Remarks on Regularity Criteria for 3D Generalized MHD Equations and Boussinesq Equations [J]. Acta mathematica scientia,Series A, 2019, 39(2): 316-328. |
[9] | Zhaoyang Shang. Blow-Up Criterion for Incompressible Magnetohydrodynamics Equations in Besov Space [J]. Acta mathematica scientia,Series A, 2019, 39(1): 67-80. |
[10] | Cai Gang. The Well-Posedness of Degenerate Differential Equations with Finite Delay in Banach Spaces [J]. Acta mathematica scientia,Series A, 2018, 38(2): 264-275. |
[11] | Fang Jingxuan, Zhao Jiman. Variable Homogeneous Besov and Triebel-Lizorkin Spaces on Stratified Groups [J]. Acta mathematica scientia,Series A, 2018, 38(1): 34-45. |
[12] | Zhao Leina. Homogenization of Degenerate Quasilinear Elliptic Equations [J]. Acta mathematica scientia,Series A, 2017, 37(5): 860-868. |
[13] | Xu Meiyu, Lu Dayong. Frame Properties of Wave Packet Systems in Sobolev Spaces Hs(Rd) [J]. Acta mathematica scientia,Series A, 2016, 36(5): 848-860. |
[14] | Song Naiqi, Zhao Jiman. Strichartz Estimates for the Wave Equation with the Full-Laplacian on the Quaternion Heisenberg Group [J]. Acta mathematica scientia,Series A, 2016, 36(1): 90-116. |
[15] | LIANG Zhan-Ping, SU Jia-Bao. Solutions to Inhomogeneous Quasilinear Elliptic Problems with Concave-Convex Type Nonlinearities [J]. Acta mathematica scientia,Series A, 2014, 34(2): 217-226. |
|