Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (4): 925-945.
Previous Articles Next Articles
Received:
2023-03-07
Revised:
2023-10-16
Online:
2024-08-26
Published:
2024-07-26
Supported by:
CLC Number:
Yu Ting, Dong Ying. The Convergence Rate of the Fast Signal Diffusion Limit for a Three-Dimensional Keller-Segel-Stokes System[J].Acta mathematica scientia,Series A, 2024, 44(4): 925-945.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Biler P. Local and global solvability to some parabolic-elliptic systems of chemotaxis. Adv Math Sci Appl, 1998, 8: 715-743 |
[2] | Biler P, Brandolese L. On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modelling chemotaxis. Stud Math, 2009, 193: 241-261 |
[3] | Cao X, Lankeit J. Global classical small-data solutions for a three-dimensional chemo-taxis Navier-Stokes system involving matrix-valued sensitivities. Calc Var Partial Dif, 2016, 55: Article 107 |
[4] | Duan R, Li X, Xiang Z. Global existence and large time behavior for a two-dimensional chemotaxis-Navier-Stokes system. J Diff Equ, 2017, 263: 6284-6316 |
[5] | Duan R, Lorz A, Markowich P A. Global solutions to the coupled chemotaxis-fluid equations. Comm Part Diff Eqs, 2010, 35: 1635-1673 |
[6] | Freitag M. The fast signal diffusion limit in nonlinear chemotaxis systems. Disc Cont Dyn Syt-B, 2020, 25: 1109-1128 |
[7] | Herrero M A, Velazquez J J L. A blow up mechanism for a chemotaxis system. Ann Scuola Norm Sup Pisa Cl Sci, 1997, 24: 633-683 |
[8] | Hillen T, Painter K J. A user's guide to PDE models for chemotaxis. J Math Biol, 2009, 58(1): 183-217 |
[9] | Horstmann D. From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I. Jahresber Dtsch Math Ver, 2003, 105: 103-165 |
[10] | Horstmann D, Wang G. Blow-up in a chemotaxis model without symmetry assumptions. European J Appl Math, 2001, 12: 159-177 |
[11] | Horstmann D, Winkler M. Boundedness vs. blow-up in a chemotaxis system. J Diff Equ, 2005, 215(1): 52-107 |
[12] | Jager W, Luckhaus S. On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans Amer Math Soc, 1992, 329: 819-824 |
[13] | Ke Y, Zheng J. An optimal result for global existence in a three-dimensional Article Keller-Segel-Navier-Stokes system involving tensor-valued sensitivity with saturation. Calc Var Partial Dif, 2019, 58: Article 109 |
[14] |
Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability. J Theor Biol, 1970, 26: 399-415
pmid: 5462335 |
[15] | Kurokiba M, Ogawa T. Singular limit problem for the Keller-Segel system and drift-diffusion system in scaling critical spaces. J Evol Equ, 2020, 20: 421-457 |
[16] | Lemarie Rieusset P G. Small data in an optimal Banach space for the parabolic-parabolic and parabolic-elliptic Keller-Segel equations in the whole space. Adv Differential Equations, 2013, 18: 1189-1208 |
[17] | Li M, Xiang Z. The convergence rate of the fast signal diffusion limit for a Keller-Segel-Stokes system with large initial data. Proc R Soc Edinburgh Sect A Math, 2021, 151: 1972-2012 |
[18] | Li M, Xiang Z, Zhou G. The stability analysis of a 2D Keller-Segel-Navier-Stokes system in fast signal diffusion. Euro J of Applied Mathematics, 2023, 34: 160-209 |
[19] | Li X, Wang Y, Xiang Z. Global existence and boundedness in a 2D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux. Commun Math Sci, 2016, 14: 1889-1910 |
[20] | Mizoguchi N, Souplet P. Nondegeneracy of blow-up points for the parabolic Keller-Segel system. Ann I H Poincaré AN, 2014, 31: 851-875 |
[21] |
Mizukami M. The fast signal diffusion limit in a Keller-Segel system. J Math Anal Appl, 2019, 472: 1313-1330
doi: 10.1016/j.jmaa.2018.11.077 |
[22] | Nagai T. Global existence of solutions to a parabolic system for chemotaxis in two space dimensions. Nonlinear Analysis Theory Methods Applications, 1997, 30: 5381-5388 |
[23] | Nagai T. Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains. J Inequal Appl, 2001, 6: 37-55 |
[24] | Nagai T, Senba T. Behavior of radially symmetric solutions of a system related to chemo-taxis. Rims Kokyuroku, 1996, 973: 32-39 |
[25] | Nagai T, Senba T, Yoshida K. Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkcial Ekvac Ser Int, 1997, 40: 411-433 |
[26] | Osaki K, Yagi A. Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkcial Ekvac, 2001, 44: 441-469 |
[27] | Peng Y, Xiang Z. Global existence and boundedness in a 3D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux. Z Angew Math Phys, 2017, 68: Article 68 |
[28] | Raczynski A. Stability property of the two-dimensional Keller-Segel model. Asympt Anal, 2009, 61: 35-59 |
[29] | Tuval I, Cisneros L, Dombrowski C, et al. Bacterial swimming and oxygen transport near contact lines. Proc Nat Acad Sci USA, 2005, 102: 2277-2282 |
[30] | Wang Y. Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with subcritical sensitivity. Math Models Methods Appl Sci, 2017, 27: 2745-2780 |
[31] | Wang Y, Winkler M, Xiang Z. A smallness condition ensuring boundedness in a two-dimensional Chemotaxis-Navier-Stokes system involving Dirichlet boundary conditions for the signal. Acta Mathematica Sinica, 2022, 38: 985-1001 |
[32] | Wang Y, Winkler M, Xiang Z. Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity. Ann Sc Norm Super Pisa Cl Sci, 2018, 18: 421-466 |
[33] | Wang Y, Winkler M, Xiang Z. The small-convection limit in a two-dimensional chemotaxis-Navier-Stokes system. Math Z, 2018, 289: 71-108 |
[34] | Wang Y, Winkler M, Xiang Z. The fast signal diffusion limit in Keller-Segel(-fluid) systems. Calc Var Partial Dif, 2019, 58: Article 196 |
[35] | Wang Y, Xiang Z. Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation. J Diff Equ, 2015, 259: 7578-7609 |
[36] | Wang Y, Xiang Z. Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation: the 3D case. J Diff Equ, 2016, 261: 4944-4973 |
[37] | Winkler M. Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J Math Pures Appl, 2013, 100: 748-767 |
[38] | Winkler M. Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops. Comm Part Diff Eqs, 2012, 37: 319-351 |
[39] | Winkler M. Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system. Ann I H Poincaré AN, 2016, 33: 1329-1352 |
[40] | Winkler M. Stabilization in a two-dimensional chemotaxis-Navier-Stokes system. Arch Rational Mech Anal, 2014, 211: 455-487 |
[41] | Winkler M. Aggregation vs. global diffusive behavior in the higher-demensional Keller-Segel model. J Diff Equ, 2010, 248: 2889-2905 |
[42] | Wu C, Xiang Z. Saturation of the signal on the boundary: Global weak solvability in a chemotaxis-Stokes system with porous-media type cell diffusion. J Diff Equ, 2022, 315: 122-158 |
[43] | Yu H, Wang W, Zheng S. Global classical solutions to the Keller-Segel-Navier-Stokes system with matrix-valued sensitivity. J Math Anal Appl, 2018, 461: 1748-1770 |
[44] | Zhang Q, Li Y. Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion. J Diff Equ, 2015, 259: 3730-3754 |
[45] | Zheng J. Global existence and boundedness in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Annali di Matematica Pura ed Applicata, 2022, 201: 243-288 |
[1] | Jian Jinbao, Dai Yu, Yin Jianghua. An Inertial Conjugate Gradient Projection Method for the Split Feasibility Problem [J]. Acta mathematica scientia,Series A, 2024, 44(4): 1066-1079. |
[2] | Chen Jianhua, Peng Jianwen. Research on the Convergence Rate of Bregman ADMM for Nonconvex Multiblock Optimization [J]. Acta mathematica scientia,Series A, 2024, 44(1): 195-208. |
[3] | Lin Jie, Wang Tianyi. Well-Posedness and Convergence Rates of Three-Dimensional Incompressible Euler Flows in Axisymmetric Nozzles with Symmetric Body [J]. Acta mathematica scientia,Series A, 2023, 43(1): 219-237. |
[4] | Yiyuan Cheng,Xingxing Zha,Yongquan Zhang. On Stochastic Accelerated Gradient with Convergence Rate of Regression Learning [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1574-1584. |
[5] | Qianqian Xie,Xiaoping Zhai,Boqing Dong. Optimal Decay for the N-Dimensional Incompressible Oldroyd-B Model Without Damping Mechanism [J]. Acta mathematica scientia,Series A, 2021, 41(3): 762-769. |
[6] | Juan Wang,Jie Zhao. Homogenization of the Oscillating Robin Mixed Boundary Value Problems [J]. Acta mathematica scientia,Series A, 2021, 41(1): 81-90. |
[7] | Yuanfei Li,Zhiqing Li. Phragmén-Lindelöf Type Results for Transient Heat Conduction Equation with Nonlinear Boundary Conditions [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1248-1258. |
[8] | Juan Wang,Jie Zhao. Homogenization of Higher-Order Equations with Mixed Boundary Condition [J]. Acta mathematica scientia,Series A, 2020, 40(4): 925-933. |
[9] | Menglan Liao,Bin Guo. Asymptotic Stability of Weak Solutions to Wave Equation with Variable Exponents and Strong Damping Term [J]. Acta mathematica scientia,Series A, 2020, 40(1): 146-155. |
[10] | Juan Wang,Jie Zhao. Homogenization of the Neumann Boundary Value Problem: The Sharper W1, p Estimate [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1115-1124. |
[11] | Yao Qingliu. Existence and Successively Iterative Method of Singular Solution to a Nonlinear Fractional Differential Equation [J]. Acta mathematica scientia,Series A, 2016, 36(2): 287-296. |
[12] | ZHU Xu-Sheng, LI Fang-E. The Global Solutions of the Compressible Euler Equations With Nonlinear Damping in 3-Dimensions [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1111-1122. |
[13] | ZHANG Dan-Dan. Pointwise Estimates for the Solution to the Multi-Dimensional Generalized BBM-Burgers Equation [J]. Acta mathematica scientia,Series A, 2014, 34(3): 473-486. |
[14] | ZHANG Chun-Guo, QIU Zhe-Yong. Energy Decay Estimates for the Nonhomogeneous Timoshenko Beam with a Local Nonlinear Feedback [J]. Acta mathematica scientia,Series A, 2010, 30(1): 197-206. |
[15] | XI Fu-Bao. Exponential Convergence Rates for Markov Processes with Markovian Switching [J]. Acta mathematica scientia,Series A, 2009, 29(4): 1051-1057. |
|