Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (4): 1037-1051.
Previous Articles Next Articles
Wang Ruyu,Zhao Wenling*(),Song Daojin
Received:
2023-07-07
Revised:
2024-02-25
Online:
2024-08-26
Published:
2024-07-26
Supported by:
CLC Number:
Wang Ruyu, Zhao Wenling, Song Daojin. The Finite Termination of Feasible Solution Sequence for Optimization and Variational Inequality[J].Acta mathematica scientia,Series A, 2024, 44(4): 1037-1051.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Rockafellar R T, Wets R J B. Variational Analysis. New York: Springer Science & Business Media, 2009 |
[2] | Rockafellar R T. Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization, 1976, 14(5): 877-898 |
[3] | Polyak B T. Introduction to Optimization. New York: Optimization Software, 1987: 1-32 |
[4] | Ferris M C. Weak Sharp Minima and Penalty Functions in Mathematical Programming. Cambridge: University of Cambridge, 1988 |
[5] | Ansari Q H, Babu F, Yao J C. Regularization of proximal point algorithms in Hadamard manifolds. Journal of Fixed Point Theory and Applications, 2019, 21: 1-23 |
[6] | Dinis B, Pinto P. Metastability of the proximal point algorithm with multi-parameters. Portugaliae Mathematica, 2020, 77(3): 345-381 |
[7] | Ferris M C. Finite termination of the proximal point algorithm. Mathematical Programming, 1991, 50: 359-366 |
[8] | Kim J L, Toulis P, Kyrillidis A. Convergence and stability of the stochastic proximal point algorithm with momentum. Proc Machine Learn Res, 2022, 168: 1034-1047 |
[9] | Matsushita S, Xu L. Finite termination of the proximal point algorithm in Banach spaces. Journal of Mathematical Analysis and Applications, 2012, 387(2): 765-769 |
[10] | Mokhtari A, Ozdaglar A, Pattathil S. A unified analysis of extra-gradient and optimistic gradient methods for saddle point problems: Proximal point approach. Proc Machine Learn Res, 2020, 108: 1497-1507 |
[11] | Nemirovski A. Prox-method with rate of convergence $ \mathcal{O}(1/t) $ for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on Optimization, 2004, 15(1): 229-251 |
[12] | Xiu N, Zhang J. On finite convergence of proximal point algorithms for variational inequalities. Journal of Mathematical Analysis and Applications, 2005, 312(1): 148-158 |
[13] | Al-Khayyal F, Kyparisis J. Finite convergence of algorithms for nonlinear programs and variational inequalities. Journal of Optimization Theory and Applications, 1991, 70(2): 319-332 |
[14] | Burke J V, Moré J J. On the identification of active constraints. SIAM Journal on Numerical Analysis, 1988, 25(5): 1197-1211 |
[15] | Carmona R, Laurière M. Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: II—the finite horizon case. The Annals of Applied Probability, 2022, 32(6): 4065-4105 |
[16] | Fischer A, Kanzow C. On finite termination of an iterative method for linear complementarity problems. Mathematical Programming, 1996, 74: 279-292 |
[17] | Griewank A, Walther A. Finite convergence of an active signature method to local minima of piecewise linear functions. Optimization Methods and Software, 2019, 34(5): 1035-1055 |
[18] | Nguyen L V, Qin X L. Weak sharpness and finite convergence for mixed variational inequalities. Journal of Applied & Numerical Optimization, 2019, 1(1): 77-90 |
[19] | Solodov M V, Tseng P. Some methods based on the D-gap function for solving monotone variational inequalities. Computational Optimization and Applications, 2000, 17: 255-277 |
[20] | Wang C, Liu Q, Yang X. Convergence properties of nonmonotone spectral projected gradient methods. Journal of Computational and Applied Mathematics, 2005, 182(1): 51-66 |
[21] | Wang C, Zhao W, Zhou J, et al. Global convergence and finite termination of a class of smooth penalty function algorithms. Optimization Methods and Software, 2013, 28(1): 1-25 |
[22] | Xiu N, Zhang J. Some recent advances in projection-type methods for variational inequalities. Journal of Computational and Applied Mathematics, 2003, 152(1/2): 559-585 |
[23] | Zhao Z, Liu Z. Finite-time convergence disturbance rejection control for a flexible Timoshenko manipulator. IEEE/CAA Journal of Automatica Sinica, 2020, 8(1): 157-168 |
[24] | Burke J V, Deng S. Weak sharp minima revisited, part II: Application to linear regularity and error bounds. Mathematical Programming, 2005, 104: 235-261 |
[25] | Burke J V, Deng S. Weak sharp minima revisited, Part III: Error bounds for differentiable convex inclusions. Mathematical Programming, 2009, 116(1/2): 37-56 |
[26] | Bonnans J F, Shapiro A. Perturbation Analysis of Optimization Problems. New York: Springer Science & Business Media, 2013 |
[27] | Fong R, Patrick M, Vedaldi A. Understanding deep networks via extremal perturbations and smooth masks//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 2950-2958 |
[28] | Jourani A. Hoffman's error bound, local controllability, and sensitivity analysis. SIAM Journal on Control and Optimization, 2000, 38(3): 947-970 |
[29] | Tirer T, Huang H, Niles-Weed J. Perturbation analysis of neural collapse//International Conference on Machine Learning. 2023: 34301-34329 |
[30] | Wang C Y, Zhang J Z, Zhao W L. Two error bounds for constrained optimization problems and their applications. Applied Mathematics and Optimization, 2008, 57: 307-328 |
[31] | Xu K, Shi Z, Zhang H, et al. Automatic perturbation analysis for scalable certified robustness and beyond. Advances in Neural Information Processing Systems, 2020, 33: 1129-1141 |
[32] | Zheng X Y, Yang X Q. Weak sharp minima for semi-infinite optimization problems with applications. SIAM Journal on Optimization, 2007, 18(2): 573-588 |
[33] | Burke J V, Ferris M C. Weak sharp minima in mathematical programming. SIAM Journal on Control and Optimization, 1993, 31(5): 1340-1359 |
[34] | Marcotte P, Zhu D. Weak sharp solutions of variational inequalities. SIAM Journal on Optimization, 1998, 9(1): 179-189 |
[35] | Zhou J, Wang C. New characterizations of weak sharp minima. Optimization Letters, 2012, 6: 1773-1785 |
[36] | Burke J V, Ferris M C. Characterization of solution sets of convex programs. Operations Research Letters, 1991, 10(1): 57-60 |
[37] | Rockafellar R T. Convex Analysis. Princeton: Princeton Univ Press, 1970 |
[38] | Calamai P H, Moré J J. Projected gradient methods for linearly constrained problems. Mathematical Programming, 1987, 39(1): 93-116 |
[1] | Chen Jianhua, Peng Jianwen. Research on the Convergence Rate of Bregman ADMM for Nonconvex Multiblock Optimization [J]. Acta mathematica scientia,Series A, 2024, 44(1): 195-208. |
[2] | Huang Xiaomei, Tang Guoji. KKT and Weakly Complementary Approximate KKT Conditions for Interval-Valued Optimization Problems [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1897-1913. |
[3] | Xie Feifei, Fang Donghui. Approximate Farkas Lemma and Approximate Duality for Fractional Optimization Problems [J]. Acta mathematica scientia,Series A, 2023, 43(1): 305-320. |
[4] | Jiaolang Wang,Donghui Fang. Approximate Optimality Conditions and Mixed Type Duality for a Class of Non-Convex Optimization Problems [J]. Acta mathematica scientia,Series A, 2022, 42(3): 651-660. |
[5] | Tingwei Pan,Suxiang He. The Greedy Simplex Algorithm for Double Sparsity Constrained Optimization Problems [J]. Acta mathematica scientia,Series A, 2022, 42(3): 920-933. |
[6] | Lingli Hu,Liping Tian,Donghui Fang. Optimality Conditions for DC Composite Optimization Problems with Conical Constraints [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1079-1087. |
[7] | Dongping Ye,Donghui Fang. Lagrange Dualities for Robust Composite Optimization Problems [J]. Acta mathematica scientia,Series A, 2020, 40(4): 1095-1107. |
[8] | Guodong Ma. A Strongly Convergent Generalized Gradient Projection Method for Minimax Optimization with General Constraints [J]. Acta mathematica scientia,Series A, 2020, 40(3): 641-649. |
[9] | Donghui Fang,Liping Tian,Xianyun Wang. Strong Fenchel-Lagrange Duality for Convex Optimization Problems with Composite Function [J]. Acta mathematica scientia,Series A, 2020, 40(1): 20-30. |
[10] | Lingli Hu, Donghui Fang. Optimality Conditions for Composite Optimization Problems with Conical Constraints [J]. Acta mathematica scientia,Series A, 2018, 38(6): 1112-1121. |
[11] | Runxin Li,Hui Huang,Zhenhong Shang,Yu Cao,Hongbin Wang,Jing Zhang. Lagrange-Like Multiplier Rules for Weak Approximate Pareto Solutions of Multiobjective Constrained Vector Optimization Problems [J]. Acta mathematica scientia,Series A, 2018, 38(6): 1076-1094. |
[12] | Donghui Fang,Weilin Liu. The Farkas Lemmas for Fractional Optimization Problem with Composite Functions [J]. Acta mathematica scientia,Series A, 2018, 38(5): 842-854. |
[13] | CHEN Jia-Wei, LI Jun, WANG Jing-Nan. Optimality Conditions and Duality for Nonsmooth Multiobjective Optimization Problems with Cone Constraints [J]. Acta mathematica scientia,Series A, 2012, 32(1): 1-12. |
[14] |
Chen Zhe.
Generalized Augmented Lagrangian Duality Theory and Applications in Vector Optimization Problems |
[15] | He Suxiang;Zhang Liwei. A Modified Lagrangian Algorithm for Solving Nonlinear Constrained Optimization Problems [J]. Acta mathematica scientia,Series A, 2006, 26(1): 49-062. |
|