Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (3): 687-698.
Previous Articles Next Articles
Received:
2023-05-26
Revised:
2023-10-06
Online:
2024-06-26
Published:
2024-05-17
Supported by:
CLC Number:
Bin Maojun, Shi Cuiyun. Time Optimal Control for Semilinear Riemann-Liouville Fractional Evolution Feedback Control Systems[J].Acta mathematica scientia,Series A, 2024, 44(3): 687-698.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Barbu V. The time-optimal control problem for parabolic variational inequalities. Appl Math Optim, 1984, 11: 1-22 |
[2] | Berkovitz L D. Optimal Control Theory. New York: Springer-Verlag, 1974 |
[3] | Bin M J. Time optimal control for semilinear fractional evolution feedback control systems. Optimization, 2019, 68(4): 819-832 |
[4] | Bin M J, Deng H Y, Li Y X, Zhao J. Properties of the set of admissible "state control" part for a class of fractional semilinear evolution control systems. Fract Calc Appl Anal, 2021, 24(4): 1275-1298 |
[5] | Bin M J, Liu Z H. On the "bang-bang" principle for nonlinear evolution hemivariational inequalities control systems. J Math Anal Appl, 2019, 480(1): 123364 |
[6] | Bin M J, Liu Z H. Relaxation in nonconvex optimal control for nonlinear evolution hemivariational inequalities. Nonlinear Analysis: Real World Applications, 2019, 50: 613-632 |
[7] | Dixon J, McKee S. Weakly singular discrete gronwall inequalities. Z Angew Math Mech, 1986, 68(11): 535-544 |
[8] | Fattorini H O. Time-Optimal control of solutions of operational differential equations. SIAM J Control, 1964, 2: 54-59 |
[9] | Glockle W G, Nonnenmacher T F. A fractional calculus approach of self-similar protein dynamics. Biophys J, 1995, 68: 46-53 |
[10] | Henry D. Geometric Theory of Semilinear Parabolic Equations. Berlin-New York: Springer-Verlag, 1981 |
[11] | Himmelberg C J. Measurable relations. Fund Math, 1975, 87: 53-72 |
[12] | Hu S, Papageorgiou N S. Handbook of Multivalued Analysis:Volume I Theory. Dordrecht: Kluwer Academic Publishers, 1997 |
[13] | Jeong J M, Kim J R, Roh H H. Optimal control problems for semilinear evolution equations. J Korean Math Soc, 2008, 45(3): 757-769 |
[14] | Jeong J M, Son S J. Time optimal control of semilinear control systems involving time delays. J Optim Theory Appl, 2015, 165: 793-811 |
[15] | Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. Netherlands: North-Holland, 2006 |
[16] | Kumar S, Sukavanam N. Approximate controllability of fractional order semilinear systems with bounded delay. J Diff Equ, 2012, 252(11): 6163-6174 |
[17] | LaSalle J P. The time optimal control problem// Cesari L, Lasalle J, Lefschetz S. Contributions to the Theory of Nonlinear Oscillations. Princeton: Princeton University Press, 1960, 1(5): 1-24 |
[18] | Li X, Yong J. Optimal Control Theory for Infinite Dimensional Systems. Boston: Birkhäuser, 1995 |
[19] | Lightbourne J H, Rankin S M. A partial functional differential equation of Sobolev type. J Math Anal Appl, 1983, 93: 328-337 |
[20] | Liu X Y, Liu Z H, Fu X. Relaxation in nonconvex optimal control problems described by fractional differential equations. J Math Anal Appl, 2014, 409(1): 446-458 |
[21] | Liu Z H, Bin M J. Approximate controllability of impulsive Riemann-Liouville fractional equations in Banach spaces. J Int Equat Appl, 2014, 26(4): 527-551 |
[22] | Liu Z H, Li X W. Approximate controllability for a class of hemivariational inequalities. Nonlinear Anal RWA, 2015, 22: 581-591 |
[23] | Liu Z H, Li X W. Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives. SIAM J Control Optim, 2015, 53(4): 1920-1933 |
[24] | Liu Z H, Zeng S D, Bai Y R. Maximum principles for multi-term space-time variable-order fractional diffusion equations and their applications. Fractional Calculus & Applied Analysis, 2016, 19(1): 188-211 |
[25] | Lu L, Liu Z H. Existence and controllability results for stochastic fractional evolution hemivariational inequalities. Appl Math Comput, 2015, 268: 1164-1176 |
[26] | Mainardi F, Paradisi P, Gorenflo R. Probability distributions generated by fractional diffusion equations//Kertesz J, Kondor I, eds. Dordrecht: Kluwer Academic Publisher, 2000 |
[27] | Podlubny I. Fractional Differential Equations. San Diego: Academic Press, 1999 |
[28] | Wang J R, Fečkan M, Zhou Y. Approximate controllability of sobolev type fractional evolution systems with nonlocal conditions. Evolution Equations and Control Theory, 2017, 6(3): 471-486 |
[29] | Wang J R, Fečkan M, Zhou Y. Fractional order differential switched systems with coupled nonlocal initial and impulsive conditions. Bulletin des Sciences Mathématiques, 2017, 141: 727-746 |
[30] | Wang J R, Zhou Y, Wei W. Optimal feedback control for semilinear fractional evolution equations in Banach spaces. Syst Contr Letter, 2012, 61: 472-476 |
[31] | Warga J. Optimal Control of Differential and Functional Equations. New York: Academic Press, 1972 |
[32] | Yong J M. Time optimal controls for semilinear distributed parameter systems-existence theory and necessary conditions. Kodai Mathematical Journal, 1991, 14(2): 239-253 |
[33] | Zhou Y, Jiao F. Existence of mild solutions for fractional neutral evolution equations. Comput Math Appl, 2010, 59: 1063-1077 |
[1] | Ruixia Yin, Zedong Wang, Long Zhang. A Periodic Stage Structure Single-Population Model with Infinite Delay and Feedback Control [J]. Acta mathematica scientia,Series A, 2024, 44(4): 994-1011. |
[2] | Pang Yuting, Zhao Dongxia. The PDP Feedback Control and Exponential Stabilization of a Star-Shaped Open Channels Network System [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1803-1813. |
[3] |
Lu Weiping,Liu Hanbing.
Sampled-Data Time Optimal Control for Heat Equation with Potential in |
[4] | Changyou Wang,Nan Li,Tao Jiang,Qiang Yang. On a Nonlinear Non-Autonomous Ratio-Dependent Food Chain Model with Delays and Feedback Controls [J]. Acta mathematica scientia,Series A, 2022, 42(1): 245-268. |
[5] | Changxu Shao,Shutang Liu. Fractal Feature and Control of Three-Species Predator-Prey Model [J]. Acta mathematica scientia,Series A, 2019, 39(4): 951-962. |
[6] | Li Zhouhong, Zhang Fengshuo, Cao Jinde, Alsaedi Ahmed, Alsaadi Fuad E. Almost Periodic Solution for a Non-Autonomous Two Species Competitive System with Feedback Controls on Time Scales [J]. Acta mathematica scientia,Series A, 2017, 37(4): 730-750. |
[7] | Fu Jinbo, Chen Lansun. Positive Periodic Solution of Multiple Species Comptition System with Ecological Environment and Feedback Controls [J]. Acta mathematica scientia,Series A, 2017, 37(3): 553-561. |
[8] | Zhang Liping, Liu Dongyi, Zhang Guoshan. Exponential Stabilization of a Timoshenko Beam System with Internal Disturbances [J]. Acta mathematica scientia,Series A, 2017, 37(1): 185-198. |
[9] | Huang Zuda. Positive Pseudo Almost Periodic Solutions for a Delayed Nicholson's Blowflies Model with a Feedback Control [J]. Acta mathematica scientia,Series A, 2016, 36(3): 558-568. |
[10] | Dong Wangyuan. Feedback Stabilization of a Class of Parabolic Systems with Neumann Boundary Conditions [J]. Acta mathematica scientia,Series A, 2008, 28(6): 1133-1149. |
[11] | WANG Geng-Sheng, LI Shu-Gang. Stabilization of the Phase-field System via Internal Feedback |Control [J]. Acta mathematica scientia,Series A, 2004, 24(2): 193-199. |
[12] | HU Gen-Qi, FENG De-Xin. Uniform Stabilization of Timoshenko Beams with Boundary Feedba ck Control [J]. Acta mathematica scientia,Series A, 2003, 23(6): 719-728. |
|