[1] |
Oplinger D. Frequency response of a nonlinear stretched string. J Acoust Soc Amer, 1960, 32: 1529-1538
|
[2] |
Kirchhoff G. Vorlesungen über Mathematische Physik: Mechanik. Leipzig: Teubner, 1876
|
[3] |
Ambrosetti A, Cerami G, Ruiz D. Solitons of linearly coupled systems of semilinear non-autonomous equations on $ \mathbb{R}^{N} $. J Funct Anal, 2008, 254(11): 2816-2845
|
[4] |
Ambrosetti A, Colorado E, Ruiz D. Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations. Calc Var Partial Differential Equations, 2007, 30(1): 85-112
|
[5] |
Chen Z, Zou W. Ground states for a system of Schrödinger equations with critical exponent. J Funct Anal, 2012, 262(7): 3091-3107
|
[6] |
Chen Z, Zou W. On linearly coupled Schrödinger systems. Proc Amer Math Soc, 2014, 142(1): 323-333
|
[7] |
Peng S, Shuai W, Wang Q. Multiple positive solutions for linearly coupled nonlinear elliptic systems with critical exponent. J Differential Equations, 2017, 263(1): 709-731
|
[8] |
Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math, 1983, 36(4): 437-477
|
[9] |
Naimen D. The critical problem of Kirchhoff type elliptic equations in dimension four. J Differential Equations, 2014, 257(4): 1168-1193
|
[10] |
Naimen D. On the Brezis-Nirenberg problem with a Kirchhoff type perturbation. Adv Nonlinear Stud, 2015, 15(1): 135-156
|
[11] |
Clapp M, Weth T. Multiple solutions for the Brezis-Nirenberg problem. Adv Differential Equations, 2005, 10(4): 463-480
|
[12] |
Gao F, Yang M. The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation. Sci China Math, 2018, 61(7): 1219-1242
|
[13] |
Servadei R, Valdinoci E. The Brezis-Nirenberg result for the fractional Laplacian. Trans Amer Math Soc, 2015, 367(1): 67-102
|
[14] |
He X, Zou W. Ground state solutions for a class of fractional Kirchhoff equations with critical growth. Sci China Math, 2019, 62(5): 853-890
|
[15] |
Xie Q, Ma S, Zhang X. Bound state solutions of Kirchhoff type problems with critical exponent. J Differential Equations, 2016, 261(2): 890-924
|
[16] |
He Y, Li G. Standing waves for a class of Kirchhoff type problems in $ \mathbb{R}^{3} $ involving critical Sobolev exponents. Calc Var Partial Differential Equations, 2015, 54(3): 3067-3106
|
[17] |
Tang X, Chen S. Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials. Calc Var Partial Differential Equations, 2017, 56(4): 110
|
[18] |
Lü D, Peng S. Existence and asymptotic behavior of vector solutions for coupled nonlinear Kirchhoff-type systems. J Differential Equations, 2017, 263(12): 8947-8978
|
[19] |
Lions P. The concentration-compactness principle in the calculus of variations. The limit case I. Rev Mat Iberoamericana, 1985, 1(1): 145-201
|