Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (2): 376-383.
Previous Articles Next Articles
Received:
2023-04-29
Revised:
2023-09-05
Online:
2024-04-26
Published:
2024-04-07
Supported by:
CLC Number:
Zhang Xin, Wu Xinglong. The Initial Value Problem for a Modified Camassa-Holm Equation with Cubic Nonlinearity[J].Acta mathematica scientia,Series A, 2024, 44(2): 376-383.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Korteweg D J, De Vries G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil Mag, 1895, 39(5): 422-443
doi: 10.1080/14786449508620739 |
[2] | Kato T. Quasi-linear equation of evolution, with applications to partical differential equations//Spectral Theorey and Differential Equation. Berlin: Springer-Verlag, 1975, 448: 25-70 |
[3] |
Kato T. On the Korteweg-de Vries equation. Manuscripta Math, 1979, 28(1): 89-99
doi: 10.1007/BF01647967 |
[4] |
Lax P D. Integrals of nonlinear equations of evolution and solitary waves. Comm Pure Appl Math, 1968, 21(5): 467-490
doi: 10.1002/cpa.v21:5 |
[5] |
Camassa R, Holm D D. An integrable shallow water equation with peaked solitons. Phys Rev Letters, 1993, 71(11): 1661-1664
doi: 10.1103/PhysRevLett.71.1661 |
[6] |
Fuchssteiner B, Fokas A S. Symplectic structures, their Backlund transformations and hereditary symmetries. Physica D: Nonlinear Phenomena, 1981, 4(1): 47-66
doi: 10.1016/0167-2789(81)90004-X |
[7] | Camassa R, Holm D D, Hyman J M. A new integrable shallow water equation. Adv Appl Mech, 1994, 31: 1-33 |
[8] | Constantin A. The Hamiltonian structure of the Camassa-Holm equation. Expo Math, 1997, 15: 53-85 |
[9] |
Constantin A, Strauss W A. Stability of peakons. Comm Pure Appl Math, 2000, 53(5): 603-610
doi: 10.1002/(ISSN)1097-0312 |
[10] |
Constantin A, Strauss W A. Stability of the Camassa-Holm solitons. J Nonlinear Sci, 2002, 12(4): 415-422
doi: 10.1007/s00332-002-0517-x |
[11] |
Bressan A, Constantin A. Global conservative solutions of the Camassa-Holm equation. Arch Rat Mech Anal, 2007, 183(2): 215-239
doi: 10.1007/s00205-006-0010-z |
[12] | Bressan A, Constantin A. Global dissipative solutions of the Camassa-Holm equation. Anal Appl, 2007, 5(1): 1-27 |
[13] | Constantin A. Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann lnst Fourier, 2000, 50(2): 321-362 |
[14] | Constantin A, Escher J. Global existence and blow-up for a shallow water equation. Annali Sc Norm Sup Pisa, 1998, 26(2): 303-328 |
[15] | Constantin A, Escher J. Global weak solutions for a shallow water equation. Indiana Univ Math J, 1998, 47: 1527-1545 |
[16] | Danchin R. A few remarks on the Camassa-Holm equation. Differ Intergal Equ, 2001, 14(8): 953-988 |
[17] |
Danchin R. A note on well-posedness for Camassa-Holm equation. J Differ Equations, 2003, 192(2): 429-444
doi: 10.1016/S0022-0396(03)00096-2 |
[18] |
Fuchssteiner B. Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation. Physica D: Nonlinear Phenomena, 1996, 95(3/4): 229-243
doi: 10.1016/0167-2789(96)00048-6 |
[19] |
Olver P J, Rosenau P. Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys Rev E, 1996, 53(2): 1900-1906
pmid: 9964452 |
[20] |
Fu Y, Gui G L, Liu Y, Qu C Z. On the Cauchy problem for the integrable modified Camassa-Holm equation with cubic nonlinearity. J Differ Equations, 2013, 255(7): 1905-1938
doi: 10.1016/j.jde.2013.05.024 |
[21] |
Gui G L, Liu Y, Olver P J, Qu C Z. Wave-breaking and peakons for a modified Camassa-Holm equation. Comm Math Phys, 2013, 319(3): 731-759
doi: 10.1007/s00220-012-1566-0 |
[22] |
Wu X L, Guo B L. The exponential decay of solutions and traveling wave solutions for a modified Camassa-Holm equation with cubic nonlinearity. J Math Phys, 2014, 55(8): 081504
doi: 10.1063/1.4891989 |
[23] |
Du L J, Wu X L. Global well-posedness of a two-component b-family equations in $ H^{s-1,p} \left (\mathbb{R} \right )\times H^{s,p} \left (\mathbb{R} \right ) $. J Math Fluid Mech, 2022, 24(4): 100
doi: 10.1007/s00021-022-00735-x |
[24] | Liu Z Y, Wu X L. Well-posedness and blow-up phenomena for the Camassa-Holm equation in $ H^{s,p} \left (\mathbb{R} \right ) $. [2024-2-26]. https://doi.org/10.22541/au.170668925.50901220/v1 |
[25] | Pazy A. Semigroup of Linear Operators and Applications to Partial Differential Equations. New York: Springer-Verlag, 1986 |
[1] | Wang Xuan, Yuan Haiyan. Attractors for the Nonclassical Diffusion Equation with Time-Dependent Memory Kernel [J]. Acta mathematica scientia,Series A, 2024, 44(2): 429-452. |
[2] | Liu Guowei, Wang Qiling. The Well-posedness of a Delayed Non-Newtonian Fluid on ${2D}$ Unbounded Domains [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1789-1802. |
[3] | Cai Senlin,Zhou Shouming,Chen Rong. On the Cauchy Problem for a Shallow Water Regime of Waves with Large Amplitude [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1197-1120. |
[4] | Zeng Jing,Peng Jiayu. Essential Stability and Hadamard Well-Posedness of Excess Demand Equilibrium Problems [J]. Acta mathematica scientia,Series A, 2023, 43(3): 930-938. |
[5] | Lin Jie, Wang Tianyi. Well-Posedness and Convergence Rates of Three-Dimensional Incompressible Euler Flows in Axisymmetric Nozzles with Symmetric Body [J]. Acta mathematica scientia,Series A, 2023, 43(1): 219-237. |
[6] | Xiangyu Xiao,Zhilin Pu. The Global Attractors of Cahn-Hilliard-Brinkman System [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1027-1040. |
[7] | Baishun Lai,Qing Luo. Well-Posedness of a Fourth Order Parabolic Equation Modeling MEMS [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1718-1733. |
[8] | Dandan Sun,Yingke Li,Zhidong Teng,Tailei Zhang. Analysis of the Stability for Measles Epidemic Model with Age-Structured [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1950-1968. |
[9] | Xuanxuan Xi,Mimi Hou,Xianfeng Zhou. Invariance Sets and Well-Posedness for the Weak Solution of Non-Autonomous Caputo Fractional Evolution Equation [J]. Acta mathematica scientia,Series A, 2021, 41(1): 149-165. |
[10] | Cai Gang. The Well-Posedness of Degenerate Differential Equations with Finite Delay in Banach Spaces [J]. Acta mathematica scientia,Series A, 2018, 38(2): 264-275. |
[11] | Marko Kostić, Li Chenggang, Li Miao. Abstract Multi-Term Fractional Differential Equations with Riemann-Liouville Derivatives [J]. Acta mathematica scientia,Series A, 2016, 36(4): 601-622. |
[12] | QU Feng-Long, LI Xi-Liang. The Interior Transmission Problem for Isotropic Maxwell Equations and Some Estimates on the Index of Refraction [J]. Acta mathematica scientia,Series A, 2013, 33(6): 1178-1188. |
[13] | ZHU Li, XIA Fu-Quan . Levitin-Polyak Well-posedness of Generalized Mixed Variational Inequalities [J]. Acta mathematica scientia,Series A, 2012, 32(4): 633-643. |
|