Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (2): 384-395.
Previous Articles Next Articles
Gao Chenghua(),Ding Huanhuan*(
),He Xingyue(
)
Received:
2023-01-25
Revised:
2023-09-05
Online:
2024-04-26
Published:
2024-04-07
Supported by:
CLC Number:
Gao Chenghua, Ding Huanhuan, He Xingyue. Radial Solutions of Coupled Systems for a Class of Superlinear
[1] |
Caffarelli L, Nirenberg L, Spruck J. The Dirichlet problem for nonlinear second-order elliptic equations, III: Functions of the eigenvalues of the Hessian. Acta Mathematica, 1985, 155(3): 261-301
doi: 10.1007/BF02392544 |
[2] |
Caffarelli L. Interior ![]() ![]() ![]() ![]() doi: 10.2307/1971510 |
[3] |
Hai D D, Shivaji R. Positive radial solutions for a class of singular superlinear problems on the exterior of a ball with nonlinear boundary conditions. Journal of Mathematical Analysis and Applications, 2017, 456(2): 872-881
doi: 10.1016/j.jmaa.2017.06.088 |
[4] |
Hai D D, Shivaji R. Existence and multiplicity of positive radial solutions for singular superlinear elliptic systems in the exterior of a ball. Journal of Differential Equations, 2019, 266(4): 2232-2243
doi: 10.1016/j.jde.2018.08.027 |
[5] |
Hai D D, Wang X. Positive solutions for the one-dimensional ![]() doi: 10.7494/OpMath.2019.39.5.675 |
[6] |
Hu S C, Wang H Y. Convex solutions of boundary value problems arising from Monge-Ampère equation. Discrete and Continuous Dynamical Systems, 2006, 16(3): 705-720
doi: 10.3934/dcds.2006.16.705 |
[7] |
Sánchez J, Vergara V. Bounded solutions of a ![]() doi: 10.1016/j.jde.2016.03.021 |
[8] |
Wei W. Uniqueness theorems for negative radial solutions of ![]() doi: 10.1016/j.jde.2016.06.004 |
[9] |
Sun H Y, Feng M Q. Boundary behavior of ![]() ![]() doi: 10.1016/j.na.2018.06.010 |
[10] |
Feng M Q. New results of coupled system of ![]() doi: 10.1016/j.aml.2019.03.008 |
[11] |
Wang Q, Xu C J. C![]() ![]() ![]() ![]() |
[12] |
Wei W. Existence and multiplicity for negative solutions of ![]() doi: 10.1016/j.jde.2017.02.049 |
[13] |
Zhang Z J, Zhou S. Existence of entire positive ![]() doi: 10.1016/j.aml.2015.05.018 |
[14] | Covei D P. A necessary and a sufficient condition for the existence of the positive radial solutions to Hessian equation and systems with weights. Acta Mathematica Scientia, 2017, 37B(1): 47-57 |
[15] |
Gao C H, He X Y, Ran M J. On a power-type coupled system of ![]() doi: 10.2989/16073606.2020.1816586 |
[16] |
Feng M Q, Zhang X M. A coupled system of ![]() doi: 10.1002/mma.v2:1 |
[1] | Dai Guowei,Gao Siyu,Ma Ruyun. Global Bifurcation for the Yamabe Equation on the Unit Sphere [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1391-1396. |
[2] | Xiaojin Bai,Jianfeng Zhu. Boundary Schwarz Lemma for Solutions to a Class of Inhomogeneous Biharmonic Equations [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1633-1639. |
[3] | Lihong Zhang,Zedong Yang,Guotao Wang,Dumitru Baleanu. Existence and Asymptotic Behavior of Solutions of a Class of k-Hessian Equation [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1357-1371. |
[4] | Xiaoyao Jia,Zhenluo Lou. Existence of Multiple Non-Radial Positive Solutions of a Hénon Type Elliptic System [J]. Acta mathematica scientia,Series A, 2021, 41(3): 723-728. |
[5] |
Zaitao Liang,Xuemeng Shan.
Multiplicity of Radial Solutions of ![]() |
[6] |
Yihua Deng.
Existence of Positive Radial Solution to a Class of Kirchhoff type Equation in ![]() ![]() |
[7] | Pei Ruichang, Zhang Jihui, Ma Caochuan. Nontrivial Solutions for a Class of Superlinear (p, 2)-Laplacian Dirichlet Problems [J]. Acta mathematica scientia,Series A, 2017, 37(1): 92-101. |
[8] | LAN Yong-Yi, TANG Chun-Lei. PERTURBATION METHODS IN SEMILINEAR ELLIPTIC PROBLEMS INVOLVING CRITICAL HARDY-SOBOLEV EXPONENT [J]. Acta mathematica scientia,Series A, 2014, 34(3): 703-712. |
[9] | PEI Rui-Chang. Nontrivial Solutions for p-Laplacian Dirichlet Problem [J]. Acta mathematica scientia,Series A, 2013, 33(1): 165-173. |
[10] | GE Bin, XUE Xiao-Ping, ZHOU Qing-Mei. Multiple Solutions for a p(x)}-Kirchhoff-type Equation with Nonsmooth Potential [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1431-1438. |
[11] | Yao Qingliu. Positive Radial Solution to a Class of Nonlinear Dirichlet Boundary Value Problems [J]. Acta mathematica scientia,Series A, 2009, 29(1): 48-56. |
[12] | HU Xin-Ye. The Boundary Value Problem for Nonlinear Elliptic Equations in Annular DOmain [J]. Acta mathematica scientia,Series A, 2000, 20(zk): 675-683. |
[13] | Li Junping Hou Zhenting. A Harmonic Calculus on SG(N,3) [J]. Acta mathematica scientia,Series A, 2000, 20(4): 528-539. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 100
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 81
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|