Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (1): 133-139.
Previous Articles Next Articles
Bai Jinyan1(),Chai Shugen2,*()
Received:
2023-01-25
Revised:
2023-09-11
Online:
2024-02-26
Published:
2024-01-10
Supported by:
CLC Number:
Bai Jinyan, Chai Shugen. Stabilization of Degenerate Wave Equations with Delayed Boundary Feedback[J].Acta mathematica scientia,Series A, 2024, 44(1): 133-139.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Citti G, Manfredini M. A degenerate parabolic equation arising in image processing. Commun Appl Anal, 2004, 8(1): 125-141 |
[2] | Ghil M. Climate stability for a Sellers type mode. J Atmo Sci, 1976, 29(5): 483-493 |
[3] |
Ethier S N, Kurtz T G. Fleming-Viot processes in population genetics. SIAM J Control Optim, 1993, 31(2): 345-386
doi: 10.1137/0331019 |
[4] |
Alabau-Boussouira F, Cannarsa P, Leugering G. Control and stabilization of degenerate wave equation. SIAM J Control Optim, 2017, 55(3): 2052-2087
doi: 10.1137/15M1020538 |
[5] |
Zhang M M, Gao H. Null controllability of some degenerate wave equations. J Syst Sci Complex, 2017, 30(5): 1027-1041
doi: 10.1007/s11424-016-5281-3 |
[6] |
Zhang M M, Gao H. Persistent regional null controllability of some degenerate wave equations. Math Meth Appl Sci, 2017, 40(16): 5821-5830
doi: 10.1002/mma.v40.16 |
[7] |
Zhang M M, Gao H. Interior controllability of semi-linear degenerate wave equations. J Math Anal Appl, 2018, 457(1): 10-22
doi: 10.1016/j.jmaa.2017.07.057 |
[8] |
Bai J Y, Chai S G. Exact controllability for some degenerate wave equations. Math Meth Appl Sci, 2020, 43(12): 7292-7302
doi: 10.1002/mma.v43.12 |
[9] | Bai J Y, Chai S G. Exact controllability for a one-dimensional degenerate wave equation in domains with moving boundary. Appl Math Lett, 2021, 119: Article ID 107235 |
[10] | Gumowski I, Mira C. Optimization in Control Theory and Practice. Cambridge: Cambridge University Press, 1968 |
[11] |
Datko R, Lagness J, Poilis M P. An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J Control Optim, 1986, 24(1): 152-156
doi: 10.1137/0324007 |
[12] |
Datko R. Not all feedback stabilized hyperbolic systems are robust with respect to small time delay in their feedbacks. SIAM J Control Optim, 1988, 26(3): 697-713
doi: 10.1137/0326040 |
[13] | Wang J N, Yang D Z. Stability and bifurcation of a pathogen-immune model with delay and diffusion effects. Acta Math Sci, 2021, 41A(4): 1204-1217 |
[14] |
Xu G Q, Yung S P, Li L K. Stabilization of wave systems with input delay in the boundary control. ESAIM Control Optim Calc Var, 2006, 12(4): 770-785
doi: 10.1051/cocv:2006021 |
[15] |
Nicaise S, Pignotti C. Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J Control Optim, 2006, 45(5): 1561-1585
doi: 10.1137/060648891 |
[16] | Nicaise S, Pignotti C. Stabilization of the wave equation with boundary or internal distributed delay. Differential Integral Equ, 2008, 21(9/10): 935-958 |
[17] |
Ait Benhassi E M, Ammari K, Boulite S, Maniar L. Feedback stabilization of a class of evolution equations with delay. J Evol Equ, 2009, 9(1): 103-121
doi: 10.1007/s00028-009-0004-z |
[18] |
Nicaise S, Valein J. Stabilization of second order evolution equations with unbounded feedback with delay. ESAIM Control Optim Calc Var, 2010, 16(2): 420-456
doi: 10.1051/cocv/2009007 |
[19] |
Ammari K, Nicaise S, Pignotti C. Feedback boundary stabilization of wave equations with interior delay. Syst Control Lett, 2010, 59(10): 623-628
doi: 10.1016/j.sysconle.2010.07.007 |
[1] | Ma Yani, Yuan Hailong. Bifurcation Analysis of a Class of Gierer-Meinhardt Activation Inhibition Model with Time Delay [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1774-1788. |
[2] | Kang Xiaodong, Fan Hongxia. Approximate Controllability for a Class of Second-Order Evolution Equations with Instantaneous Impulse [J]. Acta mathematica scientia,Series A, 2023, 43(2): 421-432. |
[3] | Yage Tong,Kaisu Wu. Spectral Analysis of the Main Operator of Rotenberg Equation with Time Delay Under Nonsmooth Boundary Conditions [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1320-1331. |
[4] | Tailei Zhang,Junli Liu,Mengjie Han. Dynamics of an Anthrax Epidemiological Model with Time Delay and Seasonality [J]. Acta mathematica scientia,Series A, 2022, 42(3): 851-866. |
[5] | Daoxiang Zhang,Ben Li,Dandan Chen,Yating Lin,Xinmei Wang. Hopf Bifurcation for a Fractional Differential-Algebraic Predator-Prey System with Time Delay and Economic Profit [J]. Acta mathematica scientia,Series A, 2022, 42(2): 570-582. |
[6] | Xiling Li,Fei Gao,Wenqin Li. Stability Analysis of Fractional-Order Hepatitis B Virus Infection Model With Immune Delay [J]. Acta mathematica scientia,Series A, 2021, 41(2): 562-576. |
[7] | Jian Liu,Zhixin Zhang,Wei Jiang. Global Mittag-Leffler Stability of Fractional Order Nonlinear Impulsive Differential Systems with Time Delay [J]. Acta mathematica scientia,Series A, 2020, 40(4): 1053-1060. |
[8] | Haiyin Li. Hopf Bifurcation of Delayed Density-Dependent Predator-Prey Model [J]. Acta mathematica scientia,Series A, 2019, 39(2): 358-371. |
[9] | Lifei Zheng,Jie Guo,Meihua Wu,Xiaorui Wang,Aying Wan. The Research on a Class of the Predator-Prey-Mutualist System with Delays [J]. Acta mathematica scientia,Series A, 2018, 38(5): 1001-1013. |
[10] | Zhang Shuwen. A Stochastic Predator-Prey System with Time Delays and Prey Dispersal [J]. Acta mathematica scientia,Series A, 2015, 35(3): 592-603. |
[11] | Luo Ricai, Xu Honglei, Wang Wusheng. Globally Asymptotic Stability of A New Class of Neutral Neural Networks with Time-Varying Delays [J]. Acta mathematica scientia,Series A, 2015, 35(3): 634-640. |
[12] | JIANG Yu, MEI Li-Quan, SONG Xin-Yu, TIAN Wei-Jun, DING Xue-Mei. Analysis of an Impulsive Epidemic Model with Time Delays and Nonlinear Incidence Rate [J]. Acta mathematica scientia,Series A, 2012, 32(4): 670-684. |
[13] |
Wu Shiliang ;Li Wantong.
Stability and Traveling Fronts in Lotka-Volterra Cooperation Model with Stage Structure [J]. Acta mathematica scientia,Series A, 2008, 28(3): 454-464. |
[14] | Gui Zhanji; Jia Jing; Ge Weigao. Global Stability of Single-species Diffusion Models with Time Delay [J]. Acta mathematica scientia,Series A, 2007, 27(3): 496-505. |
[15] |
Gao Shujing ;Chen Lansun.
ermanence and Global Stability for Single-species Model with Three Life Stages and Time Delay |
|