[1] |
Nield D A. A note on modelling of local thermal non-equilibrium in a structured porous medium. Int J Heat Mass Transfer, 2002, 45: 4367-4368
doi: 10.1016/S0017-9310(02)00138-2
|
[2] |
Nield D A. Effects of local thermal non-equilibrium in steady convection processes in saturated porous media: forced convection in a channel. J Porous Media, 1998, 1: 181-186
|
[3] |
Nield D A, Kuznetsov A V. The onset of convection in a bidisperse porous medium. Int J Heat Mass Transfer, 2006, 49: 3068-3074
doi: 10.1016/j.ijheatmasstransfer.2006.02.008
|
[4] |
Falsaperla P, Mulone G, Straughan B. Bidispersive-inclined convection. Proc R Soc A, 2016, 472: 20160480
|
[5] |
Franchi F, Nibbi R, Straughan B. Continuous dependence on modelling for temperature-dependent bidispersiveflow. Proc R Soc A, 2017, 473(2208): 20170485.
doi: 10.1098/rspa.2017.0485
|
[6] |
Li Y F, Lin C H. Continuous dependence for the nonhomogeneous Brinkman-Forchheimer equations in a semi-infinite pipe. Applied Mathematics and Computation, 2014, 244: 201-208
doi: 10.1016/j.amc.2014.06.082
|
[7] |
李远飞, 李志青. 具有非线性边界条件的瞬态热传导方程的二择一结果. 数学物理学报, 2020, 40A(5): 1248-1258
|
|
Li Y F, Li Z Q. Phragmén-Lindelöf Type Results for transient heat conduction equation with nonlinear boundary conditions. Acta Mathematica Scientia, 2020, 40A(5): 1248-1258
|
[8] |
Scott N L. Continuous dependence on boundary reaction terms in a porous medium of Darcy type. J Math Anal Appl, 2013, 399: 667-675
doi: 10.1016/j.jmaa.2012.10.054
|
[9] |
李远飞, 肖胜中, 曾鹏. 饱和蒸汽大气原始方程组的连续依赖性. 华东师范大学学报 (自然科学版), 2021, 2021(3): 34-46
|
|
Li Y F, Xiao S Z, Zeng P. Continuous dependence of primitive equations of the atmosphere with vapor saturation. Journal of East China Normal University (Natural Science), 2021, 2021(3): 34-46
|
[10] |
Liu Y. Continuous dependence for a thermal convection model with temperature-dependent solubility. Applied Mathematics and Computation, 2017, 3008: 18-30
|
[11] |
Liu Y, Du Y, Lin C H. Convergence and continuous dependence results for the Brinkman equations. Applied Mathematics and Computation, 2010, 215:, 4443-4455
doi: 10.1016/j.amc.2009.12.047
|
[12] |
Ciarletta M, Straughan B, Tibullo V. Structural stability for a thermal convection model with temperature-dependent solubility. Nonlinear Analysis Real World Applications, 2015, 22: 34-43
doi: 10.1016/j.nonrwa.2014.07.012
|
[13] |
Payne L E, Song J C. Spatial decay estimates for the Brinkman and Darcy flows in a semi-infinite cylinder. Continuum Mech Thermodyn, 1997, 9: 175-190
doi: 10.1007/s001610050064
|
[14] |
李远飞. Keller-Segel 趋化模型解的全局存在性和爆破时间的下界估计. 应用数学和力学, 2022, 43(7): 816-824
|
|
Li Y F. Global existence of solutions and lower bound estimate of blow-up time for the Keller-Segel chemotaxis model. Applied Mathematics and Mechanics, 2022, 43(7): 816-824
|
[15] |
Payne L E, Song J C. Spatial decay bounds for double diffusive convection in Brinkman flow. Journal of Differential Equations, 2008, 244: 413-430
doi: 10.1016/j.jde.2007.10.003
|
[16] |
Horgan C O, Wheeler L T. Spatial decay estimates for the Navier-Stokes equations with application to the problem of entry flow. SIAM J Appl Math, 1978, 35: 97-116
doi: 10.1137/0135008
|