Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (6): 1759-1773.
Previous Articles Next Articles
Received:
2023-01-05
Revised:
2023-04-12
Online:
2023-12-26
Published:
2023-11-16
Supported by:
CLC Number:
Zhou Yinggao, Li Zhouxin. An Application of Linking Theorem to Degenerative Elliptic Equations[J].Acta mathematica scientia,Series A, 2023, 43(6): 1759-1773.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Adachia S, Watanable T. G-invariant positive solutions for a quasilinear Schrödinger equation. Adv Differential Equations, 2011, 16: 289-324 |
[2] |
Adachia S, Watanable T. Uniqueness of the ground state solutions of quasilinear Schrödinger equations. Nonlinear Anal, 2012, 75: 819-833
doi: 10.1016/j.na.2011.09.015 |
[3] |
Arcoya D, Boccardo L, Orsina L. Existence of critical points for some noncoercive functionals. Ann Inst H Poincaré Anal Non Linéaire, 2001, 18(4): 437-457
doi: 10.4171/aihpc |
[4] | Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent. Commum Pure Appl Math, 1983, 36: 437-478 |
[5] |
Brizhik L, Eremko A, Piette B, Zakrzewski W J. Static solutions of a D-dimensional modified nonlinear Schrödinger equation. Nonlinearity, 2003, 16: 1481-1497
doi: 10.1088/0951-7715/16/4/317 |
[6] |
Colin M, Jeanjean L. Solutions for a quasilinear Schrödinger equation: A dual approch. Nonlinear Anal, 2004, 56: 213-226
doi: 10.1016/j.na.2003.09.008 |
[7] |
Degiovanni M, Lancelotti S. Linking solutions for p-Laplace equations with nonlinearity at critical growth. Journal of Functional Analysis, 2009, 256: 3643-3659
doi: 10.1016/j.jfa.2009.01.016 |
[8] |
Degiovanni M, Magrone P. Linking solutions for quasilinear equations at critical growth involving the "1-Laplace" operator. Calc Var Partial Differential Equations, 2009, 36: 591-609
doi: 10.1007/s00526-009-0246-1 |
[9] |
Deng Y, Peng S, Yan S. Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth. J Differential Equations, 2015, 258: 115-147
doi: 10.1016/j.jde.2014.09.006 |
[10] |
Deng Y, Peng S, Yan S. Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations. J Differential Equations, 2016, 260: 1228-1262
doi: 10.1016/j.jde.2015.09.021 |
[11] |
Ghoussoub N, Yuan C. Multiple solutions for quasi-linear PDES involving the critical Sobolev and Hardy exponents. Trans Amer Math Soc, 2000, 352(12): 5703-5743
doi: 10.1090/tran/2000-352-12 |
[12] |
Hartmann B, Zakzeweski W. Electrons on hexagonal lattices and applications to nanotubes. Phys Rev B, 2003, 68: 184302
doi: 10.1103/PhysRevB.68.184302 |
[13] | Kurihura S. Large-Amplitude qusi-solitons in superfuid filme. J Math Soc Japan, 1981, 50: 3262-3267 |
[14] |
Laedke E W, Spatschek K H, Stenflo L. Evolution theorem for a class of perturbed envelope soliton solutions. J Math Phys, 1983, 24: 2764-2769
doi: 10.1063/1.525675 |
[15] |
Li Z. Positive solutions for a class of singular quasilinear Schrödinger equations with critical Sobolev exponent. J Differential Equations, 2019, 266: 7264-7290
doi: 10.1016/j.jde.2018.11.030 |
[16] |
Li Z, Yuan X, Zhang Q. Existence of critical points for noncoercive functionals with critical Sobolev exponent. Appl Anal, 2022, 101: 5358-5375
doi: 10.1080/00036811.2021.1892078 |
[17] |
Li Z, Zhang Y. Solutions for a class of quasilinear Schrödinger equations with critical Sobolev exponents. J Math Phys, 2017, 58: 021501
doi: 10.1063/1.4975009 |
[18] |
Liu J Q, Wang Z Q. Soliton solutions for quasilinear Schrödinger equations I. Proc Amer Math Soc, 2002, 131: 441-448
doi: 10.1090/proc/2003-131-02 |
[19] |
Liu J Q, Wang Y Q, Wang Z Q. Soliton solutions for quasilinear Schrödinger equations II. J Differential Equations, 2003, 187: 473-493
doi: 10.1016/S0022-0396(02)00064-5 |
[20] | Lions P L. The concentration-compactness principle in the calculus of variations. The limit case, Part 2. Rev Mat Iberoam, 1985, 1(2): 45-121 |
[21] |
Liu J Q, Wang Y Q, Wang Z Q. Solutions for the quasilinear Schrödinger equations via the Nehari Method. Comm Partial Differential Equations, 2004, 29: 879-901
doi: 10.1081/PDE-120037335 |
[22] | Shen Y, Li Z, Wang Y. Sign-Changing critical points for noncoercive functionals. Topol Methods Nonlinear Anal, 2014, 43(2): 373-384 |
[23] |
Shen Y, Wang Y. Soliton solutions for generalized quasilinear Schrödiger equations. Nonlinear Anal, 2013, 80: 194-201
doi: 10.1016/j.na.2012.10.005 |
[24] |
Silva E A B, Vieira G F. Quasilinear asymptotically periodic Schödinger equations with critical growth. Calc Var Partial Differential Equations, 2010, 39: 1-33
doi: 10.1007/s00526-009-0299-1 |
[25] | Wang Y, Zhang Y, Shen Y. Multiple solutions for quasilinear Schrödinger equations involving critical exponent. Appl Math Comput, 2010, 216: 849-856 |
[26] | Wang Y, Zou W. Bound states to critical quasilinear Schrödinger equations. NoDEA Nonlinear Differential Equations Appl, 2012, 19: 194-201 |
[27] |
Yang J, Wang Y, Abdelgadir A A. Soliton solutions for quasilinear Schrödinger equations. J Math Phys, 2013, 54: 071502
doi: 10.1063/1.4811394 |
[1] | Cheng Qingfang,Liao Jiafeng,Yuan Yanxiang. Existence of Positive Solutions for a Class of Schrödinger-Newton Systems with Critical Exponent [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1373-1381. |
[2] | Lin Chen,Fanqin Liu. Multiplicity of Solutions to Fractional Critical Choquard Equation [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1682-1704. |
[3] | Heqian Lu,Zhengce Zhang. The Critical Exponents for the Evolution p-Laplacian Equation with Nonlinear Gradient Terms [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1381-1397. |
[4] | Lei Ji,Jiafeng Liao. Existence of Positive Ground State Solutions for a Class of Kirchhoff Type Problems with Critical Exponent [J]. Acta mathematica scientia,Series A, 2022, 42(2): 418-426. |
[5] | Yongpeng Chen,Zhipeng Yang. Multiplicity of Solutions for a Class of Critical Schrödinger-Poisson System with Two Parameters [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1750-1767. |
[6] | Hui Yang,Yuzhu Han. Blow-Up Properties of Solutions to a Class of Parabolic Type Kirchhoff Equations [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1333-1346. |
[7] | Weilin Zou,Yuanchun Ren,Meipin Xiao. Regularizing Effect of L1 Interplay Between Coefficients in Nonlinear Degenerate Elliptic Equations [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1405-1414. |
[8] | Xiaojing Feng. Nontrivial Solution for Schrödinger-Poisson type Systems with Double Critical Terms [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1590-1598. |
[9] | Lei Ji,Jiafeng Liao. Existence of the Second Positive Solution for a Class of Nonhomogeneous Kirchhoff Type Problems with Critical Exponent [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1094-1101. |
[10] | Jing Zhang. The Asymptotic Behaviors and Phase Separation for a Class of Subcritical Bose-Einstein Condensation System [J]. Acta mathematica scientia,Series A, 2019, 39(3): 441-450. |
[11] | Zhongqing Li,Wenjie Gao. Bounded Weak Solutions to an Elliptic Equation with Lower Order Terms and Degenerate Coercivity [J]. Acta mathematica scientia,Series A, 2019, 39(3): 529-534. |
[12] | Hongxue Song,Yunfeng Wei. Multiple Solutions for Quasilinear Nonhomogeneous Elliptic Equations with a Parameter [J]. Acta mathematica scientia,Series A, 2019, 39(2): 286-296. |
[13] | Xiaoming Peng,Xiaoxiao Zheng,Yadong Shang. Global Attractors for a Fourth Order Pseudo-Parabolic Equation with Fading Memory [J]. Acta mathematica scientia,Series A, 2019, 39(1): 114-124. |
[14] | Kang Dongsheng, Xiong Ping. Biharmonic Systems Involving Critical Nonlinearities and Different Rellich-Type Potentials [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1105-1118. |
[15] | Liao Jiafeng, Li Hongying. Existence and Multiplicity of Positive Solutions for the Superlinear Kirchhoff-Type Equations with Critical Sobolev Exponent [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1119-1124. |
|