[1] |
Helgason S. Differential Geometry, Lie Groups, and Symmetric Spaces. New York-London: Academic Press, 1979
|
[2] |
Mok N. Holomorphic isometries of the complex unit ball into irreducible bounded symmetric domains. Proceedings of the American Mathematical Society, 2016, 144(10): 4515-4525
|
[3] |
Ólafsson G, Ørsted B. The holomorphic discrete series for affine symmetric spaces, I. Journal of Functional Analysis, 1988, 81(1): 126-159
doi: 10.1016/0022-1236(88)90115-2
|
[4] |
Oshima T, Matsuki T. A description of discrete series for semisimple symmetric spaces. Advanced Studies in Pure Mathematics, 1984, 4: 331-390
|
[5] |
Flensted-Jensen M. Discrete series for semisimple symmetric spaces. Annals of Mathematics, 1980, 111(2): 253-311
doi: 10.2307/1971201
|
[6] |
Vogan D. Irreducibility of discrete series representations for semisimple symmetric spaces//Okamoto K, Oshima T. Representations of Lie groups, Kyoto, Hiroshima. Boston: Academic Press, 1986: 191-221
|
[7] |
Heckman G, Schlichtkrull H. Harmonic Analysis and Special Functions on Symmetric Spaces. San Diego-CA: Academic Press, 1994
|
[8] |
Macdonald I. Symmetric Functions and Hall Polynomials. New York: Oxford University Press, 1995
|
[9] |
Yan Z M. Hypergeometric functions on domains of positivity, Jack polynomials, and applications. Contemporary Mathematics, 1992, 138: 189-204
|
[10] |
华罗庚. 多复变数函数论中的典型域的调和分析. 北京: 科学出版社, 1958
|
|
Hua L G. Harmonic Analysis of Functions of Several Complex Variables on the Classical Domains. Providence: Amer Math Soc, 1963
|
[11] |
Neretin Y. Plancherel formula for Berezin deformation of $L^2$ on Riemannian symmetric space. Journal of Functional Analysis, 2002, 189(2): 336-408
doi: 10.1006/jfan.2000.3691
|
[12] |
钟家庆. Schur函数的一个展式及其在计数几何中的应用. 中国科学: A辑, 1989, 10: 1018-1029
|
|
Zhong J Q. An expansion in Schur functions and its applications in enumerative geometry. Sci China Ser A, 1989, 10: 1018-1029
|