[1] |
Abramowitz M, Stegun I A. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables. New York: Dover, 1965
|
[2] |
Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps. New York: John Wiley & Sons, 1997
|
[3] |
Anderson G D, Qiu S L, Vamanamurthy M K, Vuorinen M. Generalized elliptic integrals and modular equations. Pacific J Math, 2000, 192(1): 1-37
doi: 10.2140/pjm
|
[4] |
Ahlfors L V. Lectures on Quasiconformal Mappings. Providence, RI: Amer Math Soc, 2006
|
[5] |
Berndt B C. Ramanujan's Notebook IV. New York: Springer-Verlag, 1993
|
[6] |
Qiu S L, Ma X Y, Huang T R. Some properties of the difference between the Ramanujan constant and beta function. J Math Anal Appl, 2017, 446(1): 114-129
doi: 10.1016/j.jmaa.2016.08.043
|
[7] |
Chu H H, Yang Z H, Zhang W, Chu Y M. Improvements of the bounds for Ramanujan constant function. J Inequal Appl, 2016, Article number: 196(2016): 1-9 (Paper No. 196)
|
[8] |
Qiu S L, Ma X Y, Huang T R. Sharp approximations for the Ramanujan constant. Constr Approx, 2020, 51(2): 303-330
doi: 10.1007/s00365-019-09464-3
|
[9] |
Wang M K, Chu Y M, Qiu S L. Sharp bounds for generalized elliptic integrals of the first kind. J Math Anal Appl, 2015, 429(2): 744-757
doi: 10.1016/j.jmaa.2015.04.035
|
[10] |
Gasper G, Rahman M. Basic Hypergeometric Series. Cambridge: Cambridge University Press, 1990
|
[11] |
Tian J F, Yang Z H. Logarithmically complete monotonicity of ratios of $q$-gamma functions. J Math Anal Appl, 2022, 508(1): 125868
doi: 10.1016/j.jmaa.2021.125868
|
[12] |
Heine E. Untersuchungenüber die Reihe. J Reine Angew Math, 1847, 34: 285-328
|
[13] |
Evans R J, Stanton D. Asymptotic formulas for zero-balanced hypergeometric series. SIAM J Math Anal, 1984, 15: 1010-1020
doi: 10.1137/0515078
|
[14] |
Batir N. $q$-extensions of some estimates associated with the digamma function. J Approx Theory, 2013, 174: 54-64
doi: 10.1016/j.jat.2013.06.002
|
[15] |
Krattenthaler C, Srivastava H M. Summations for basic hypergeometric series involving a $q$-analogue of the digamma function. Comput Math Appl, 1996, 32(3): 73-91
|