Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (5): 1607-1619.
Previous Articles Next Articles
Received:
2022-08-26
Revised:
2023-03-23
Online:
2023-10-26
Published:
2023-08-09
Supported by:
CLC Number:
Yuan Yongjun. A Normalized Gradient Flow with Lagrange Multipliers for Computing Ground States of Spin-Orbit Coupled Spin-2 Bose-Einstein Condensates[J].Acta mathematica scientia,Series A, 2023, 43(5): 1607-1619.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Anderson M H, Ensher J R, Matthewa M R, et al. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science, 1995, 269: 198-201
pmid: 17789847 |
[2] | Antoine X, Levitt A, Tang Q. Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by preconditioned nonlinear conjugate gradient methods. Journal of Computational Physics, 2017, 343:92-109 |
[3] | Bao W, Cai Y. Mathematical models and numerical methods for spinor Bose-Einstein condensates. Communications in Computational Physics, 2018, 24: 899-965 |
[4] |
Bao W, Du Q. Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow. SIAM Journal on Scientific Computing, 2004, 25: 1674-1697
doi: 10.1137/S1064827503422956 |
[5] |
Bao W, Lim F. Computing ground states of spin-1 Bose-Einstein condensates by the normalized gradient flow. SIAM Journal on Scientific Computing, 2008, 30 1925-1948
doi: 10.1137/070698488 |
[6] |
Bao W, Tang W. Ground state solution of Bose-Einstein condensate by directly minimizing the energy functional. Journal of Computational Physics, 2003, 187: 230-254
doi: 10.1016/S0021-9991(03)00097-4 |
[7] |
Bao W, Wang H. A mass and magnetization conservervative and energy-diminishing numerical method for computing ground state of spin-1 Bose-Einstein condensates. SIAM Journal on Numerical Analysis, 2007, 45(5): 2177-2200
doi: 10.1137/070681624 |
[8] |
Bao W, Wang H, Markowich P A. Ground, symmetric and central vortex states in rotating Bose-Einstein condensates. Communications in Mathematical Sciences, 2005, 3(1): 57-88
doi: 10.4310/CMS.2005.v3.n1.a5 |
[9] |
Bose. Plancks gesetz und lichtquantenhypothese. Zeitschrift fur Physik, 1924, 26: 178-181
doi: 10.1007/BF01327326 |
[10] | Bradley C C, Sackett C A, Tollett J J, Hulet R G. Evidence of Bose-Einstein condensation in an atomic gas with attractive interaction. Physical Review Letters, 1995, 75: 1687-1690 |
[11] |
Cai Y, Liu W. Efficient and accurate gradient flow methods for computing ground states of spinor Bose-Einstein condensates. Journal of Computational Physics, 2021, 433: 110183
doi: 10.1016/j.jcp.2021.110183 |
[12] |
Davis K B, Mewes M O, Andrews M R, et al. Bose-Einstein condensation in a gas of sodium atoms. Physical Review Letters, 1995, 75: 3969-3973
pmid: 10059782 |
[13] | Einstein A. Quantentheorie des einatomigen idealen gases. Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1924, 22: 261-267 |
[14] | Einstein A. Quantentheorie des einatomigen idealen gases, zweite abhandlung. Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1925, 1: 3-14 |
[15] |
Ho T L. Spinor Bose condensates in optical traps. Physical Review Letters, 1998, 81: 742-745
doi: 10.1103/PhysRevLett.81.742 |
[16] |
Kawaguchi Y, Ueda M. Spinor Bose-Einstein condensates. Physics Reports, 2012, 520: 253-381
doi: 10.1016/j.physrep.2012.07.005 |
[17] |
Liu W, Cai Y. Normalized gradient flow with Lagrange multiplier for computing ground states of Bose-Einstein condensates. SIAM Journal on Scientific Computing, 2021, 43(1): B219-B242
doi: 10.1137/20M1328002 |
[18] |
Lin Y J, Compton R L, Jimenez-Garcia K, et al. Synthetic magmetic fields for ultracold neutral stoms. Nature, 2009, 462: 628-632
doi: 10.1038/nature08609 |
[19] |
Lin Y J, Compton R L, Perry A R, et al. Bose-Einstein condensates in a uniform light-induced vector potential. Physical Review Letters, 2009, 102: 130401
doi: 10.1103/PhysRevLett.102.130401 |
[20] |
Lin Y J, Jimenez-Garcia K, Spielman I B. A spin-orbit-coupled Bose-Einstein condensates. Nature, 2011, 471: 83-86
doi: 10.1038/nature09887 |
[21] |
Stamper-Kurn D M, Andrews M R, Chikkatur A P, et al. Optical confinement of a Bose-Einstein condensate. Physical Review Letters, 1998, 80: 2027-2030
doi: 10.1103/PhysRevLett.80.2027 |
[22] |
Stamper-Kurn D M, Ueda M. Spinor Bose gases: Symmetries, magnetism, and quantum dynamics. Review of Modern Physics, 2013, 85: 1191-1244
doi: 10.1103/RevModPhys.85.1191 |
[23] |
Yuan Y, Xu Z, Tang Q, Wang H. The numerical study of the ground states of spin-1 Bose-Einstein condensates with spin-orbit-coupling. East Asian Journal on Applied Mathematics, 2018, 8(3): 598-610
doi: 10.4208/eajam |
[1] | Li Yixian,Zhang Zhengjie. The Existence of Ground State Solutions for a Class of Equations Related to Klein-Gordon-Maxwell Systems [J]. Acta mathematica scientia,Series A, 2023, 43(3): 680-690. |
[2] | Li Deke, Wang Qingxuan. Limit Behavior of Mass Critical Inhomogeneous Schrödinger Equation at the Threshold [J]. Acta mathematica scientia,Series A, 2023, 43(1): 123-131. |
[3] | Anran Li,Dandan Fan,Chongqing Wei. Existence and Asymptotic Behaviour of Solutions for Kirchhoff Type Equations with Zero Mass and Critical [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1729-1743. |
[4] | Chunhui Shao,Jijiang Sun,Shiwang Ma. Ground State Travelling Waves in Infinite Lattices with Superquadratic Potentials [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1451-1461. |
[5] | Yanan Wang,Kaimin Teng. Ground State Solutions for Quasilinear Schrödinger Equation of Choquard Type [J]. Acta mathematica scientia,Series A, 2022, 42(3): 730-748. |
[6] | Xudong Shang,Jihui Zhang. Existence of Positive Ground State Solutions for the Choquard Equation [J]. Acta mathematica scientia,Series A, 2022, 42(3): 749-759. |
[7] | Lei Ji,Jiafeng Liao. Existence of Positive Ground State Solutions for a Class of Kirchhoff Type Problems with Critical Exponent [J]. Acta mathematica scientia,Series A, 2022, 42(2): 418-426. |
[8] | Lianfeng Yang,Xiaoyu Zeng. Existence and Blow-Up Behavior of Ground State Solutions for Pseudo-Relativistic Schrödinger Equations [J]. Acta mathematica scientia,Series A, 2022, 42(1): 165-175. |
[9] | Peng Chen. Ground State Solutions of Nehari-Pohozaev Type for a Class of Reaction-Diffusion System [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1347-1356. |
[10] | Yiqun Cheng,Kaimin Teng. Positive Ground State Solutions for Nonlinear Critical Kirchhoff Type Problem [J]. Acta mathematica scientia,Series A, 2021, 41(3): 666-685. |
[11] | Yaling Han,Jianlin Xiang. Existence and Asymptotic Behavior of Ground State for Fractional p-Laplacian Equations [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1622-1633. |
[12] | Xiaomeng Huang,Yimin Zhang. Existence of Ground States for a Class of Modified Gross-Pitaevskii Equations [J]. Acta mathematica scientia,Series A, 2020, 40(4): 850-856. |
[13] | Yanfang Mei,Youjun Wang. Three Types of Solutions for a Class of Nonlinear Schrödinger Equations [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1087-1093. |
[14] | Liwan Fang,Wennian Huang,Minqing Wang. Ground-State Solutions for Schrödinger-Maxwell Equations in the Critical Growth [J]. Acta mathematica scientia,Series A, 2019, 39(3): 475-483. |
[15] | Yu Chun, Wan Youyan. The Existence of Ground State to the Generalized Choquard-Pekar Equation with Superlinear Nonlinearities [J]. Acta mathematica scientia,Series A, 2018, 38(2): 276-283. |
|