Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (5): 1595-1606.
Previous Articles Next Articles
Li Dan1,Wei Fengying2,*(),Mao Xuerong3
Received:
2022-04-22
Revised:
2022-10-31
Online:
2023-10-26
Published:
2023-08-09
Contact:
Fengying Wei
E-mail:weifengying@fzu.edu.cn
Supported by:
CLC Number:
Li Dan,Wei Fengying,Mao Xuerong. Survival Analysis of an SVIR Epidemic Model with Media Coverage[J].Acta mathematica scientia,Series A, 2023, 43(5): 1595-1606.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Adimy M, Chekroun A, Kuniya T. Traveling waves of a differential-difference diffusive Kermack-McKendrick epidemic model with age-structured protection phase. J Math Anal Appl, 2022, 505(1): 125464
doi: 10.1016/j.jmaa.2021.125464 |
[2] |
Cao Z W, Feng W, Wen X D. Dynamical behavior of a stochastic SEI epidemic model with saturation incidence and logistic growth. Physica A, 2019, 523: 894-907
doi: 10.1016/j.physa.2019.04.228 |
[3] |
Capasso V, Serio G. A generalization of the Kermack-McKendrick deterministic epidemic model. Math Biosci, 1978, 42: 43-61
doi: 10.1016/0025-5564(78)90006-8 |
[4] | Caraballo T, El Fatini M, Pettersson R, et al. A stochastic SIRI epidemic model with relapse and media coverage. Discrete Cont Dyn Sys B, 2018, 23(8): 3483-3501 |
[5] |
Chen L H, Wei F Y. Persistence and distribution of a stochastic susceptible-infected-removed epidemic model with varying population size. Physica A, 2017, 483: 386-397
doi: 10.1016/j.physa.2017.04.114 |
[6] | Chen L J, Wei F Y. Study on a susceptible-exposed-infected-recovered model with nonlinear incidence rate. Adv Differ Equ, 2020, Article number 206 |
[7] |
Cui J G, Sun Y H, Zhu H P. The impact of media on the control of infectious diseases. J Dyn Differ Equ, 2008, 20(1): 31-53
doi: 10.1007/s10884-007-9075-0 pmid: 32214759 |
[8] | Feng T, Meng X Z, Zhang T H, et al. Analysis of the predator-prey interactions: A stochastic model incorporating disease invasion. Qual Theory Dyn Sys, 2020, 19: Article number 55 |
[9] | Guo Q, Liu W, Mao X R, et al. The partially truncated Euler-Maruyama method and its stability and boundedness. Appl Numer Math, 2017, 115: 235-251 |
[10] |
Guo W J, Zhang Q M, Li X N, et al. Dynamic behavior of a stochastic SIRS epidemic model with media coverage. Math Method Appl Sci 2018, 41(14): 5506-5525
doi: 10.1002/mma.v41.14 |
[11] |
Han B T, Jiang D Q, Zhou B Q, et al. Stationary distribution and probability density function of a stochastic SIRSI epidemic model with saturation incidence rate and logistic growth. Chaos, Solitons Fractals, 2011, 142: 110519
doi: 10.1016/j.chaos.2020.110519 |
[12] |
Higham D J. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev, 2001, 43: 525-546
doi: 10.1137/S0036144500378302 |
[13] |
Hou T F, Lan G J, Yuan S L, et al. Threshold dynamics of a stochastic SIHR epidemic model of COVID-19 with general population-size dependent contact rate. Math Biosci Eng, 2022, 19: 4217-4236
doi: 10.3934/mbe.2022195 pmid: 35341295 |
[14] |
Lan G J, Yuan S L, Song B J. The impact of hospital resources and environmental perturbations to the dynamics of SIRS model. J Frankl Inst-Eng Appl Math, 2021, 358(4): 2405-2433
doi: 10.1016/j.jfranklin.2021.01.015 |
[15] |
Li J H, Teng Z D, Wang G Q, et al. Stability and bifurcation analysis of an SIR epidemic model with logistic growth and saturated treatment. Chaos Solitons Fractals, 2017, 99: 63-71
doi: 10.1016/j.chaos.2017.03.047 |
[16] |
Li Y F, Cui J G. The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage. Commun Nonlinear Sci Numer Simul, 2019, 14(5): 2353-2365
doi: 10.1016/j.cnsns.2008.06.024 |
[17] | Liu J M, Chen L J, Wei F Y. The persistence and extinction of a stochastic SIS epidemic model with Logistic growth. Adv Differ Equ, 2018, Article number 68 |
[18] |
Liu Q, Jiang D Q, Hayat T, et al. Dynamical behavior of a higher order stochastically perturbed SIRI epidemic model with relapse and media coverage. Chaos Solitons Fractals, 2020, 139: 110013
doi: 10.1016/j.chaos.2020.110013 |
[19] |
Liu Q, Jiang D Q, Hayat T, et al. Dynamics of a stochastic predator-prey model with stage structure for predator and Holling type II functional response. J Nonlinear Sci, 2018, 28: 1151-1187
doi: 10.1007/s00332-018-9444-3 |
[20] | Liu Q, Jiang D Q, Shi N, et al. Dynamical behavior of a stochastic HBV infection model with logistic hepatocyte growth. Acta Math Sci, 2017, 37B(4): 927-940 |
[21] |
Lu R X, Wei F Y. Persistence and extinction for an age-structured stochastic SVIR epidemic model with generalized nonlinear incidence rate. Physica A, 2019, 513: 572-587
doi: 10.1016/j.physa.2018.09.016 |
[22] |
Mao X R, Wei F Y, Wiriyakraikul T. Positivity preserving truncated Euler-Maruyama method for stochastic Lotka-Volterra competition model. J Comput Appl Math, 2021, 394: 113566
doi: 10.1016/j.cam.2021.113566 |
[23] | Mao X R. Stochastic Differential Equations and Applications. Chichester: Horwood Publishing, 2007 |
[24] |
Mu X J, Zhang Q M, Rong L B. Optimal vaccination strategy for an SIRS model with imprecise parameters and Lèvy noise. J Frankl Inst-Eng Appl Math, 2019, 356(18): 11385-11413
doi: 10.1016/j.jfranklin.2019.03.043 |
[25] |
Nguyen D H, Nguyen N N, Yin G. Stochastic functional Kolmogorov equations, I: Persistence. Stoch Process Appl, 2021, 142: 319-364
doi: 10.1016/j.spa.2021.09.007 |
[26] |
Nguyen D H, Nguyen N N, Yin G. Stochastic functional Kolmogorov equations II: Extinction. J Differ Equ, 2021, 294(5): 1-39
doi: 10.1016/j.jde.2021.05.043 |
[27] |
Nguyen D H, Yin G, Zhu C. Long-term analysis of a stochastic SIRS model with general incidence rates. SIAM J Appl Math, 2020, 80(2): 814-838
doi: 10.1137/19M1246973 |
[28] |
Rajasekar S P, Pitchaimani M, Zhu Q X. Dynamic threshold probe of stochastic SIR model with saturated incidence rate and saturated treatment function. Physica A, 2019, 535: 122300
doi: 10.1016/j.physa.2019.122300 |
[29] | Rajasekar S P, Pitchaimani M. Ergodic stationary distribution and extinction of a stochastic SIRS epidemic model with logistic growth and nonlinear incidence. Appl Math Comput, 2020, 377: 125143 |
[30] |
Sahu G P, Dhar J. Analysis of an SVEIS epidemic model with partial temporary immunity and saturation incidence rate. Appl Math Model, 2012, 36(3): 908-923
doi: 10.1016/j.apm.2011.07.044 |
[31] |
Sun C J, Yang W, Arino J, et al. Effect of media-induced social distancing on disease transmission in a two patch setting. Math Biosci, 2011, 230(2): 87-95
doi: 10.1016/j.mbs.2011.01.005 pmid: 21296092 |
[32] | Tchuenche J M, Dube N, Bhunu C P, et al. The impact of media coverage on the transmission dynamics of human influenza. BMC Public Health, 2011, 11(1): Article number S5 |
[33] |
Wang L W, Liu Z J, Zhang X G. Global dynamics for an age-structured epidemic model with media impact and incomplete vaccination. Nonlinear Anal: Real World Appl, 2016, 32: 136-158
doi: 10.1016/j.nonrwa.2016.04.009 |
[34] |
Wei F Y, Chen F X. Stochastic permanence of an SIQS epidemic model with saturated incidence and independent random perturbations. Physica A, 2016, 453: 99-107
doi: 10.1016/j.physa.2016.01.059 |
[35] |
Wei F Y, Chen L H. Psychological effect on single-species population models in a polluted environment. Math Biosci, 2017, 290: 22-30
doi: S0025-5564(17)30142-6 pmid: 28583848 |
[36] |
Wei F Y, Jiang H, Zhu Q X. Dynamical behaviors of a heroin population model with standard incidence rates between distinct patches. J Frankl Inst-Eng Appl Math, 2021, 358(9): 4994-5013
doi: 10.1016/j.jfranklin.2021.04.024 |
[37] |
Wei F Y, Wang C J. Survival analysis of a single-species population model with fluctuations and migrations between patches. Appl Math Model, 2020, 81: 113-127
doi: 10.1016/j.apm.2019.12.023 |
[38] |
Wei F Y, Xue R. Stability and extinction of SEIR epidemic models with generalized nonlinear incidence. Math Comput Simul, 2020, 170: 1-15
doi: 10.1016/j.matcom.2018.09.029 |
[39] |
Zhang Y, Fan K G, Guo S J, et al. Ergodic stationary distribution of a stochastic SIRS epidemic model incorporating media coverage and saturated incidence rate. Physica A, 2019, 514: 671-685
doi: 10.1016/j.physa.2018.09.124 |
[40] | Zhao Y N, Jiang D Q. Dynamics of stochastically perturbed SIS epidemic model with vaccination. Abstr Appl Anal, 2013, Article number 517439 |
[41] | Zhao Y N, Jiang D Q. The threshold of a stochastic SIS epidemic model with vaccination. Appl Math Comput, 2014, 243: 718-727 |
[42] |
Zhao Y, Zhang Y P, Yuan S L. The effect of media coverage on threshold dynamics for a stochastic SIS epidemic model. Physica A, 2018, 512: 248-260
doi: 10.1016/j.physa.2018.08.113 pmid: 32288106 |
[1] | Yanjun Zhao,Xiaohui Sun,Li Su,Wenxuan Li. Qualitative Analysis of Stochastic SIRS Epidemic Model with Logistic Growth and Beddington-DeAngelis Incidence Rate [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1861-1872. |
[2] | Jiang Li,Guijie Lan,Shuwen Zhang,Chunjin Wei. Dynamics Analysis of a Stochastic Glucose-Insulin Model [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1937-1949. |
[3] | Liya Liu,Daqing Jiang. Global Dynamics of a Stochastic Chemostat Model with General Response Function and Wall Growth [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1912-1924. |
[4] | Tengfei Wang,Tao Feng,Xinzhu Meng. Complex Dynamics and Stochastic Sensitivity Analysis of a Predator-Prey Model with Crowley-Martin Type Functional Response [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1192-1203. |
[5] | Zhonghua Zhang,Qian Zhang. Qualitative Analysis of a Stochastic SIVS Epidemic Model with Nonlinear Perturbations Under Regime Switching [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1218-1234. |
[6] | Lixiang Feng,Defen Wang. Global Stability of an Epidemic Model with Quarantine and Incomplete Treatment [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1235-1248. |
[7] | Xinxin Cheng,Yaqing Rao,Gang Huang. COVID-19 Transmission Model in an Enclosed Space: A Case Study of Japan Diamond Princess Cruises [J]. Acta mathematica scientia,Series A, 2020, 40(2): 540-544. |
[8] | Zhongwei Cao,Xiangdan Wen,Wei Feng,Li Zu. Dynamics of a Nonautonomous SIRI Epidemic Model with Random Perturbations [J]. Acta mathematica scientia,Series A, 2020, 40(1): 221-233. |
[9] | Xinzhe Zhang,Guofeng He,Gang Huang. Dynamical Properties of a Delayed Epidemic Model with Vaccination and Saturation Incidence [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1247-1259. |
[10] | Guijie Lan,Yingjie Fu,Chunjin Wei,Shuwen Zhang. Stationary Distribution and Periodic Solution for Stochastic Predator-Prey Systems with Holling-Type Ⅲ Functional Response [J]. Acta mathematica scientia,Series A, 2018, 38(5): 984-1000. |
[11] | Hua Li,Sanhong Liu,Yile Fang,Xingan Zhang. Mathematical Modeling and Computer Simulation on Hand, Foot and Mouth Disease in Children [J]. Acta mathematica scientia,Series A, 2018, 38(5): 1032-1040. |
[12] | Zhang Liping, Zhao Yu, Yuan Sanling. Threshold Dynamical Behaviors of a Stochastic SIS Epidemic Model with Nonlinear Incidence Rate [J]. Acta mathematica scientia,Series A, 2018, 38(1): 197-208. |
[13] | Wei Fengying, Lin Qingteng. Extinction and Distribution for an SIQS Epidemic Model with Quarantined-Adjusted Incidence [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1148-1161. |
[14] | Meng Xiaoying. Analysis of a Stochastic Delayed Epidemic Model with a Non-Monotonic Incidence Rate [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1162-1175. |
[15] | Xu Yanli. Exponential Convergence of An Epidemic Model with Delays and Oscillating Recovery Rates [J]. Acta mathematica scientia,Series A, 2015, 35(5): 987-994. |
|