Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (5): 1483-1518.
Previous Articles Next Articles
Chen Yong1,Li Ying2,*(),Sheng Ying1,Gu Xiangmeng1
Received:
2022-01-06
Revised:
2023-04-10
Online:
2023-10-26
Published:
2023-08-09
Contact:
Ying Li
E-mail:liying@xtu.edu.cn
Supported by:
CLC Number:
Chen Yong,Li Ying,Sheng Ying,Gu Xiangmeng. Parameter Estimation for an Ornstein-Uhlenbeck Process Driven by a Type of Gaussian Noise with Hurst Parameter
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Chen Y, Zhou H. Parameter estimation for an Ornstein-Uhlenbeck process driven by a general gaussian noise. Acta Mathematica Scientia, 2021, 41B(2): 573-595 |
[2] | Alòs E, Mazet O, Nualart D. Stochastic calculus with respect to Gaussian processes. Ann Probab, 2001, 29(2): 766-801 |
[3] | Hu Y Z, Jolis M, Tindel S. On Stratonovich and Skorohod stochastic calculus for Gaussian processes. Ann Probab, 2013, 41(3A): 1656-1693 |
[4] | Douissi S, Es-Sebaiy K, Kerchev G, Nourdin I. Berry-Esseen bounds of second moment estimators for Gaussian processes observed at high frequency. Electronic Journal of Statistics, 2022, 16(1): 636-670 |
[5] | Kutoyants Y A. Statistical Inference for Ergodic Diffusion Processes. New York: Springer, 2004 |
[6] | Liptser R S, Shiryaev A N. Statistics of Random Processes II:Applications. New York: Springer, 2001 |
[7] |
Kleptsyna M L, Le Breton A. Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Stat Inference Stoch Process, 2002, 5: 229-248
doi: 10.1023/A:1021220818545 |
[8] | Tudor C, Viens F. Statistical aspects of the fractional stochastic calculus. Ann Statist, 2007, 35(3): 1183-1212 |
[9] |
Bercu B, Coutin L, Savy N. Sharp large deviations for the fractional Ornstein-Uhlenbeck process. Theory Probab Appl, 2011, 55(4): 575-610
doi: 10.1137/S0040585X97985108 |
[10] |
Brouste A, Kleptsyna M. Asymptotic properties of MLE for partially observed fractional diffusion system. Stat Inference Stoch Process, 2010, 13(1): 1-13
doi: 10.1007/s11203-009-9035-x |
[11] |
Hu Y, Nualart D. Parameter estimation for fractional Ornstein-Uhlenbeck processes. Stat Probab Lett, 2010, 80 (11/12): 1030-1038
doi: 10.1016/j.spl.2010.02.018 |
[12] |
Hu Y, Nualart D, Zhou H. Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst parameter. Stat Inference Stoch Process, 2019, 22: 111-142
doi: 10.1007/s11203-017-9168-2 |
[13] |
Sottinen T, Viitasaari L. Parameter estimation for the Langevin equation with stationary-increment Gaussian noise. Stat Inference Stoch Process, 2018, 21(3): 569-601
doi: 10.1007/s11203-017-9156-6 |
[14] | Diedhiou A, Manga C, Mendy I. Parametric estimation for SDEs with additive sub-fractional Brownian motion. Journal of Numerical Mathematics and Stochastics, 2011, 3(1): 37-45 |
[15] |
Cai C, Wang Q, Xiao W. Mixed sub-fractional Brownian motion and drift estimation of related Ornstein-Uhlenbeck process. Commun Math Stat, 2022, DOI: 10.1007/s40304-021-00245-8
doi: 10.1007/s40304-021-00245-8 |
[16] | Basawa I V, Scott D J. Asymptotic Optimal Inference for Non-ergodic Models. New York: Springer, 1983 |
[17] | Dietz H M, Kutoyants Y A. Parameter estimation for some non-recurrent solutions of SDE. Statistics and Decisions, 2003, 21(1): 29-46 |
[18] | Belfadli R, Es-Sebaiy K, Ouknine Y. Parameter estimation for fractional Ornstein-Uhlenbeck processes: non-ergodic case. Front Sci Eng Int J Hassan II Acad Sci Technol, 2011, 1(1): 1-16 |
[19] |
El Machkouri M, Es-Sebaiy K, Ouknine Y. Least squares estimator for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian processes. J Korean Stat Soc, 2016, 45: 329-341
doi: 10.1016/j.jkss.2015.12.001 |
[20] |
Mendy I. Parametric estimation for sub-fractional Ornstein-Uhlenbeck process. Journal of Statistical Planning and Inference, 2013, 143 (4): 663-674
doi: 10.1016/j.jspi.2012.10.013 |
[21] |
Alazemi F, Alsenafi A, Es-Sebaiy K. Parameter estimation for Gaussian mean-reverting Ornstein-Uhlenbeck processes of the second kind: non-ergodic case. Stoch Dyn, 2020, 20(2): 2050011
doi: 10.1142/S0219493720500112 |
[22] |
Shevchenko R, Tudor C. A. Parameter estimation for the Rosenblatt Ornstein-Uhlenbeck process with periodic mean. Stat Inference Stoch Process, 2020, 23 (1): 227-247
doi: 10.1007/s11203-019-09200-5 |
[23] | Shen G, Yu Q, Tang Z. The least squares estimator for an Ornstein-Uhlenbeck process driven by a Hermite process with a periodic mean. Acta Math Sci, 2021, 41B(2): 517-534 |
[24] |
Chen Y, Li Y. Berry-Esseen bound for the parameter estimation of fractional Ornstein-Uhlenbeck processes with $H\in (0,\frac12)$. Communications in Statistics-Theory and Methods, 2021, 50(13): 2996-3013
doi: 10.1080/03610926.2019.1678641 |
[25] |
Jolis M. On the Wiener integral with respect to the fractional Brownian motion on an interval. J Math Anal Appl, 2007, 330: 1115-1127
doi: 10.1016/j.jmaa.2006.07.100 |
[26] |
Chen Y, Ding Z, Li Y. Berry-Esseen bounds and almost sure CLT for the quadratic variation of a class of Gaussian process. Communications in Statistics-Theory and Methods, 2023, DOI:10.1080/03610926.2023.2167055
doi: 10.1080/03610926.2023.2167055 |
[27] | Pickands J. Asymptotic properties of the maximum in a stationary Gaussian process. Trans Am Math Soc, 1969, 145: 75-86 |
[28] | Chen Y, Hu Y, Wang Z. Parameter estimation of complex fractional Ornstein-Uhlenbeck processes with fractional noise. ALEA Lat Am J Probab Math Stat, 2017, 14: 613-629 |
[29] |
Shen G, Tang Z, Yin X. Least-squares estimation for the Vasicek model driven by the complex fractional Brownian motion. Stochastics, 2022, 94(4): 537-558
doi: 10.1080/17442508.2021.1959587 |
[30] |
Chen Y, Li Y, Pei X. Parameter estimation for Vasicek model driven by a general Gaussian noise. Communications in Statistics-Theory and Methods, 2023, 52(9): 3132-3148
doi: 10.1080/03610926.2021.1967399 |
[31] |
Es-Sebaiy K, Es.Sebaiy M. Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model. Stat Methods Appl, 2021, 30(2): 409-436
doi: 10.1007/s10260-020-00528-4 |
[32] | Kozachenko Y, Melnikov A, Mishura Y. On drift parameter estimation in models with fractional Brownian motion, Statistics: A Journal of Theoretical and Applied Statistics, 2015, 49(1): 35-62 |
[33] | Hu Y. Analysis on Gaussian Spaces. Hackensack, NJ: World Scientific Publishing, 2017 |
[34] | Stroock D W, Varadhan S R S. Multidimensional Diffusion Processes. Classics in Mathematics. Berlin: Springer-Verlag, 1979 |
[35] | Nourdin I, Peccati G. Normal Approximations with Malliavin Calculus:from Stein's Method to Universality. Cambridge: Cambridge University Press, 2012 |
[36] | Nualart D, Peccati G. Central limit theorems for sequences of multiple stochastic integrals. Ann Probab, 2005, 33(1): 177-193 |
[37] | Houdré C, Pérez-Abreu V, Üstünel A S. Multiple Wiener-Itô integrals:an introductory survey//Houdre C, Perez-Abren V. Chaos Expansions, Multiple Wiener-Itô Integrals and Their Applications. Boca Raton: CRC Press, 1994 |
[38] |
Kim Y T, Park H S. Optimal Berry-Esséen bound for statistical estimations and its application to SPDE. Journal of Multivariate Analysis, 2017, 155: 284-304
doi: 10.1016/j.jmva.2017.01.006 |
[1] | Chen Yong,Gu Xiangmeng. An Improved Berry-Esséen Bound of Least Squares Estimation for Fractional Ornstein-Uhlenbeck Processes [J]. Acta mathematica scientia,Series A, 2023, 43(3): 855-882. |
[2] | Huang ,Liu Haiyan,Chen Mi. Proportional Reinsurance and Investment Based on the Ornstein-Uhlenbeck Process in the Presence of Two Reinsurers [J]. Acta mathematica scientia,Series A, 2023, 43(3): 957-969. |
[3] | Yi Ding,Jingjun Guo. Pricing Asian Options Under Time-Changed Mixed Fractional Brownian Motion with Transactions Costs [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1135-1146. |
[4] | Liping Xu,Zhi Li. Transportation Inequalities for Mixed Stochastic Differential Equations [J]. Acta mathematica scientia,Series A, 2021, 41(1): 227-236. |
[5] | Liang Wu. Hurst Parameter Under Finite Second Moment and Under Heavy Tails [J]. Acta mathematica scientia,Series A, 2020, 40(4): 1072-1082. |
[6] | Liheng Sang,Zhenlong Chen,Xiaozhen Hao. Smoothness for the Renormalized Self-Intersection Local Time of Bifractional Brownian Motion [J]. Acta mathematica scientia,Series A, 2020, 40(3): 796-810. |
[7] | Qikang Ran. SDE Driven by Fractional Brown Motion and Their Coefficients are Locally Linear Growth [J]. Acta mathematica scientia,Series A, 2020, 40(1): 200-211. |
[8] | Zhaoqiang Yang. Pricing European Lookback Option in a Special Kind of Mixed Jump-Diffusion Black-Scholes Model [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1514-1531. |
[9] | Jing Cui,Qiuju Liang,Nana Bi. Asymptotic Stability of Impulsive Neutral Stochastic Functional Differential Equation Driven by Fractional Brownian Motion [J]. Acta mathematica scientia,Series A, 2019, 39(3): 570-581. |
[10] | ZHANG Hua-Yue, CHEN Wan-Hua, QU Li-An. Dynamic Below-Target Semi-Variance Risk Measure in a Fractional |Black-Scholes Market [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1674-1682. |
[11] | Li Yuqiang. Weak Limit Theorems for Ji\v{r}ina Processes with Immigration [J]. Acta mathematica scientia,Series A, 2009, 29(2): 303-315. |
[12] | Liu Shaoyue; Yang Xiangqun. Optimal Portfolio in a Fractional Black-Scholes Model with Arbitrary Hurst Parameter [J]. Acta mathematica scientia,Series A, 2008, 28(4): 742-746. |
|