Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (3): 957-969.
Previous Articles Next Articles
Huang ##1(),Liu Haiyan1,2,Chen Mi1,2,*()
Received:
2022-04-25
Revised:
2023-02-06
Online:
2023-06-26
Published:
2023-06-01
Contact:
Mi Chen
E-mail:hl2193088930@163.com;chenmi0610@163.com
Supported by:
CLC Number:
Huang ,Liu Haiyan,Chen Mi. Proportional Reinsurance and Investment Based on the Ornstein-Uhlenbeck Process in the Presence of Two Reinsurers[J].Acta mathematica scientia,Series A, 2023, 43(3): 957-969.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Browne S. Optimal investment policies for a firm with random risk process: exponential utility and minimizing the probability of ruin. Mathematics of Operations Research, 1995, 20(4): 937-958
doi: 10.1287/moor.20.4.937 |
[2] |
Liu C S, Yang H L. Optimal investment for an insurer to minimize its probability of ruin. North American Actuarial Journal, 2004, 8(2): 11-31
doi: 10.1080/10920277.2004.10596134 |
[3] | Liang Z B. Optimal proportional reinsurance for controlled risk process which is perturbed by diffusion. Acta Mathematicae Applicatae Sinica (English Series), 2007, 23(3): 477-488 |
[4] |
Chen M, Peng X F, Guo J Y. Optimal dividend problem with a nonlinear regular-singular stochastic control. Insurance: Mathematics and Economics, 2013, 52(3): 448-456
doi: 10.1016/j.insmatheco.2013.02.010 |
[5] | Meng Q B, Li Z D, Wang M H, Zhang X. Stochastic optimal control models for the insurance company with bankruptcy return. Applied Mathematics and Information Sciences, 2013, 7(1L): 273-282 |
[6] |
Li D P, Rong X M, Zhao H. Time-consistent reinsurance-investment strategy for an insurer and a reinsurer with mean-variance criterion under the CEV model. Journal of Computational and Applied Mathematics, 2015, 283: 142-162
doi: 10.1016/j.cam.2015.01.038 |
[7] |
Xu L, Zhang L M, Yao D J. Optimal investment and reinsurance for an insurer under Markov-modulated financial market. Insurance: Mathematics and Economics, 2017, 74: 7-19
doi: 10.1016/j.insmatheco.2017.02.005 |
[8] |
Wang Y J, Rong X M, Zhao H. Optimal investment strategies for an insurer and a reinsurer with a jump diffusion risk process under the CEV model. Journal of Computational and Applied Mathematics, 2018, 328: 414-431
doi: 10.1016/j.cam.2017.08.001 |
[9] |
Bi J N, Cai J. Optimal investment-reinsurance strategies with state dependent risk aversion and VaR constraints in correlated markets. Insurance: Mathematics and Economics, 2019, 85: 1-14
doi: 10.1016/j.insmatheco.2018.11.007 |
[10] |
Chen M, Yuen K C, Wang W Y. Optimal reinsurance and dividends with transaction costs and taxes under thinning structure. Scandinavian Actuarial Journal, 2021, 2021(3): 198-217
doi: 10.1080/03461238.2020.1824158 |
[11] |
Zhou Z B, Bai Y F, Xiao H L, Chen X. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial and Management Optimization, 2021, 17(2): 909-936
doi: 10.3934/jimo.2020004 |
[12] |
Li N, Wang W. Optimal dividend and proportional reinsurance strategy under standard deviation premium principle. Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45(2): 869-888
doi: 10.1007/s40840-021-01220-w |
[13] |
Young V R, Zariphopoulou T. Pricing dynamic insurance risks using the principle of equivalent utility. Scandinavian Actuarial Journal, 2002, 2002(4): 246-279
doi: 10.1080/03461230110106327 |
[14] |
Young V R. Equity-indexed life insurance: pricing and reserving using the principle of equivalent utility. North American Actuarial Journal, 2003, 7(1): 68-86
doi: 10.1080/10920277.2003.10596078 |
[15] |
Moore K S, Young V R. Pricing equity-linked pure endowments via the principle of equivalent utility. Insurance: Mathematics and Economics, 2003, 33(3): 497-516
doi: 10.1016/S0167-6687(03)00166-5 |
[16] |
Musiela M, Zariphopoulou T. An example of indifference prices under exponential preferences. Finance and Stochastics, 2004, 8(2): 229-239
doi: 10.1007/s00780-003-0112-5 |
[17] |
Chen T, Liu W, Tan T, et al. Optimal reinsurance with default risk: a reinsurer's perspective. Journal of Industrial and Management Optimization, 2021, 17(5): 2971-2987
doi: 10.3934/jimo.2020103 |
[18] |
Liang Z B, Yuen K C. Optimal dynamic reinsurance with dependent risks: variance premium principle. Scandinavian Actuarial Journal, 2016, 2016(1): 18-36
doi: 10.1080/03461238.2014.892899 |
[19] |
Han X, Liang Z B, Young V R. Optimal reinsurance to minimize the probability of drawdown under the mean-variance premium principle. Scandinavian Actuarial Journal, 2020, 2020(10): 879-903
doi: 10.1080/03461238.2020.1788136 |
[20] |
Wen C. Pricing catastrophe reinsurance under the standard deviation premium principle. AIMS Mathematics, 2022, 7(3): 4472-4484
doi: 10.3934/math.2022249 |
[21] |
Chi Y C, Meng H. Optimal reinsurance arrangements in the presence of two reinsurers. Scandinavian Actuarial Journal, 2014, 2014(5): 424-438
doi: 10.1080/03461238.2012.723638 |
[22] |
Chen M, Yuen K C. Optimal dividend and reinsurance in the presence of two reinsurers. Journal of Applied Probability, 2016, 53(2): 554-571
doi: 10.1017/jpr.2016.20 |
[23] |
Meng H, Zhou M, Siu T K. Optimal reinsurance policies with two reinsurers in continuous time. Economic Modelling, 2016, 59(1): 182-195
doi: 10.1016/j.econmod.2016.07.009 |
[24] |
Yao D J, Fan K. Optimal risk control and dividend strategies in the presence of two reinsurers: Variance premium principle. Journal of Industrial and Management Optimization, 2017, 14(3): 1055-1083
doi: 10.3934/jimo.2017090 |
[25] | Baev A V, Bondarev B V. On the ruin probability of an insurance company dealing in a BS-market. Theory of Probability and Mathematical Statistics, 2007, 74: 11-23 |
[26] |
Liang Z B, Yuen K C, Guo J Y. Optimal proportional reinsurance and investment in a stock market with Ornstein-Uhlenbeck process. Insurance: Mathematics and Economics, 2011, 49: 207-215
doi: 10.1016/j.insmatheco.2011.04.005 |
[27] |
Tian Y X, Guo J Y, Sun Z Y. Optimal mean-variance reinsurance in a financial market with stochastic rate of return. Journal of Industrial and Management Optimization, 2021, 17(4): 1887-1912
doi: 10.3934/jimo.2020051 |
[28] |
Li Y, Mao X R, Song Y Z, Tao J. Optimal investment and proportional reinsurance strategy under the mean-reverting Ornstein-Uhlenbeck process and net profit condition. Journal of Industrial and Management Optimization, 2022, 18(1): 75-93
doi: 10.3934/jimo.2020143 |
[29] |
A C X, Gu A L, Shao Y. Optimal reinsurance and investment strategy with delay in Heston's SV model. Journal of the Operations Research Society of China, 2021, 9(2): 245-271
doi: 10.1007/s40305-020-00331-8 |
[30] |
Bai Y F, Zhou Z B, Xiao H L, et al. A hybrid stochastic differential reinsurance and investment game with bounded memory. European Journal of Operational Research, 2021, 296(2): 717-737
doi: 10.1016/j.ejor.2021.04.046 |
[31] |
Liu S S, Guo W J, Tong X L. Martingale method for optimal investment and proportional reinsurance. Applied Mathematics: A Journal of Chinese Universities, 2021, 36(1): 16-30
doi: 10.1007/s11766-021-3463-8 |
[32] |
Yang H, Zhang L. Optimal investment for insurer with jump-diffusion risk process. Insurance: Mathematics and Economics, 2005, 37: 615-634
doi: 10.1016/j.insmatheco.2005.06.009 |
[1] | Chen Yong,Gu Xiangmeng. An Improved Berry-Esséen Bound of Least Squares Estimation for Fractional Ornstein-Uhlenbeck Processes [J]. Acta mathematica scientia,Series A, 2023, 43(3): 855-882. |
[2] | Kunpeng Ji,Xingchun Peng. Optimal Investment and Reinsurance Strategies for Loss-averse Insurer Considering Inflation Risk and Minimum Performance Guarantee [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1265-1280. |
[3] | Xu Chen. Optimal Life Insurance, Consumption and Investment Problem in a Lévy Model [J]. Acta mathematica scientia,Series A, 2022, 42(1): 306-320. |
[4] | Yuying Zhao,Yuzhen Wen. Optimal Investment and Proportional Reinsurance Strategies to Minimize the Probability of Drawdown Under Ambiguity Aversion [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1147-1165. |
[5] | CHEN Mi, GUO Jun-Yi. Optimal Investment and Proportional Reinsurance under Exponential Premium Calculation [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1161-1172. |
[6] | ZHANG Xin-Li, SUN Wen-Yu. Optimal Proportional Reinsurance and Investment with Transaction Costs and Liability [J]. Acta mathematica scientia,Series A, 2012, 32(1): 137-147. |
[7] | WANG Chun-Wei, YIN Chuan-Cun. Optimal Dividend Strategy in |the Perturbed Compound Poisson Risk Model with Investment [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1567-1578. |
[8] | Li Yuqiang. Weak Limit Theorems for Ji\v{r}ina Processes with Immigration [J]. Acta mathematica scientia,Series A, 2009, 29(2): 303-315. |
[9] | Xue Minggao; Gong Pu. R&D Competition Project Strategic Investment in Asymmetrical Case [J]. Acta mathematica scientia,Series A, 2008, 28(5): 794-801. |
|