Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (3): 939-956.
Previous Articles Next Articles
Received:
2022-05-12
Revised:
2023-02-12
Online:
2023-06-26
Published:
2023-06-01
Contact:
Hua Dong
E-mail:lujiaxin0928@163.com;sddh1978@126.com
Supported by:
CLC Number:
Lu Jiaxin,Dong Hua. Equilibrium Investment Strategy of DC Pension Plan with Mispricing and Return of Premiums Clauses Under the 4/2 Stochastic Volatility Model[J].Acta mathematica scientia,Series A, 2023, 43(3): 939-956.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Bian L, Li Z, Yao H. Pre-commitment and equilibrium investment strategies for the DC pension plan with regime switching and a return of premiums clause. Insurance: Mathematics and Economics, 2018, 81: 78-94
doi: 10.1016/j.insmatheco.2018.05.005 |
[2] | Björk T, Murgoci A. A general theory of Markovian time inconsistent stochastic control problems. Ssrn Electronic Journal, 2010, 18(3): 545-592 |
[3] | Chang H, Li J. Robust equilibrium strategy for DC pension plan with the return of premiums clauses in a jump-diffusion model. Optimization, 2021: 1-30 |
[4] |
Cheng Y, Escobar-Anel M. Optimal investment strategy in the family of $4/2$ stochastic volatility models. Quantitative Finance, 2021, 21: 1-29
doi: 10.1080/14697688.2020.1825781 |
[5] |
Grasselli M. The $4/2$ stochastic volatility model: A unified approach for the Heston and the $3/2$ model. Mathematical Finance, 2017, 27(4): 1013-1034
doi: 10.1111/mafi.2017.27.issue-4 |
[6] |
Gu A, Viens F G, Yao H. Optimal robust reinsurance-investment strategies for insurers with mean reversion and mispricing. Insurance: Mathematics and Economics, 2018, 80: 93-109
doi: 10.1016/j.insmatheco.2018.03.004 |
[7] |
Gu A, Viens F G, Yi B. Optimal reinsurance and investment strategies for insurers with mispricing and model ambiguity. Insurance: Mathematics and Economics, 2017, 72: 235-249
doi: 10.1016/j.insmatheco.2016.11.007 |
[8] |
Guan G, Liang Z. Optimal management of DC pension plan in a stochastic interest rate and stochastic volatility framework. Insurance: Mathematics and Economics, 2014, 57: 58-66
doi: 10.1016/j.insmatheco.2014.05.004 |
[9] |
Guan G, Liang Z. Mean-variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns. Insurance: Mathematics and Economics, 2015, 61: 99-109
doi: 10.1016/j.insmatheco.2014.12.006 |
[10] |
He L, Liang Z X. Optimal investment strategy for the DC plan with the return of premiums clauses in a mean-variance framework. Insurance: Mathematics and Economics, 2013, 53(3): 643-649
doi: 10.1016/j.insmatheco.2013.09.002 |
[11] |
Heston S L. A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies, 1993, 6(2): 327-343
doi: 10.1093/rfs/6.2.327 |
[12] | Heston S L. A simple new formula for options with stochastic volatility. Social Science Electronic Publishing, 1997, 15(4): 23-44 |
[13] | Kohler P H, Kohler I. Frailty modeling for adult and old age mortality: the application of a modified De Moivre Hazard function to sex differentials in mortality. Demographic Research, 2000, 3(8): 1-32 |
[14] |
Li D, Ng W L. Optimal dynamic portfolio selection: Multi-period mean-variance formulation. Mathematical Finance, 2000, 10(3): 387-406
doi: 10.1111/mafi.2000.10.issue-3 |
[15] |
Li D P, Rong X M, Zhao H, Yi B. Equilibrium investment strategy for DC pension plan with default risk and return of premiums clauses under CEV model. Insurance: Mathematics and Economics, 2017, 72: 6-20
doi: 10.1016/j.insmatheco.2016.10.007 |
[16] |
Liu J, Timmermann A. Optimal convergence trade strategies. The Review of Financial Studies, 2013, 26: 1048-1086
doi: 10.1093/rfs/hhs130 |
[17] |
Liu Z L, Wang Y J, Huang Y, Zhou J M. Optimal portfolios for the DC pension fund with mispricing under the HARA utility framework. Journal of Industrial and Management Optimization, 2023, 19(2): 1262-1281
doi: 10.3934/jimo.2021228 |
[18] |
Ma J, Zhao H, Rong X. Optimal investment strategy for a DC pension plan with mispricing under the Heston model. Communications in Statistics-Theory and Methods, 2020, 49(13): 3168-3183
doi: 10.1080/03610926.2019.1586938 |
[19] | Markowit H. Portfolio selection. The Journal of Finance, 1952, 7(1): 77-91 |
[20] |
Mudzimbabwe W. A simple numerical solution for an optimal investment strategy for a DC pension plan in a jump diffusion model. Journal of Computational and Applied Mathematics, 2019, 360: 55-61
doi: 10.1016/j.cam.2019.03.043 |
[21] |
Wang Y J, Deng Y C, Huang Y, Zhou J M. Optimal reinsurance-investment policies for insurers with mispricing under mean-variance criterion. Communications in Statistics-Theory and Methods, 2020, 49: 1-28
doi: 10.1080/03610926.2018.1532006 |
[22] | Wang W Y, Muravey D, Shen Y, Zeng Y. Optimal investment and reinsurance strategies under $4/2$ stochastic volatility model. Scandinavian Actuarial Journal, 2022: 1-37 |
[23] |
Wang P Q, Rong X M, Zhao H, Wang Y J. Robust optimal insurance and investment strategies for the government and the insurance company under mispricing phenomenon. Communications in Statistics-Theory and Methods, 2021, 50: 993-1017
doi: 10.1080/03610926.2019.1646765 |
[24] |
Wang P, Shen Y, Zhang L, Kang Y X. Equilibrium investment strategy for a DC pension plan with learning about stock return predictability. Insurance: Mathematics and Economics, 2021, 100: 384-407
doi: 10.1016/j.insmatheco.2021.07.001 |
[25] |
Yao H X, Lai Y Z, Ma Q H, Jian M J. Asset allocation for a DC pension fund with stochastic income and mortality risk: a multi-period mean-variance framework. Insurance: Mathematics and Economics, 2014, 54(1): 84-92
doi: 10.1016/j.insmatheco.2013.10.016 |
[26] |
Zhang Y. Dynamic optimal mean-variance investment with mispricing in the family of $4/2$ stochastic volatility models. Mathematics, 2021, 9(18): 2293
doi: 10.3390/math9182293 |
[27] |
Zhou X Y, Li D. Continuous-time mean-variance portfolio selection: A stochastic LQ framework. Applied Mathematics and Optimization, 2000, 42(1): 19-33
doi: 10.1007/s002450010003 |
[1] | BI Jun-Na, GUO Jun-Yi. Hedging Unit-linked Life Insurance Contracts under Mean-variance Criterion [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1141-1149. |
|