Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (3): 930-938.
Previous Articles Next Articles
Received:
2022-06-22
Revised:
2023-02-06
Online:
2023-06-26
Published:
2023-06-01
Contact:
Jing Zeng
E-mail:zengjing1983@ctbu.edu.cn;pjjpjy@163.com
Supported by:
CLC Number:
Zeng Jing,Peng Jiayu. Essential Stability and Hadamard Well-Posedness of Excess Demand Equilibrium Problems[J].Acta mathematica scientia,Series A, 2023, 43(3): 930-938.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Arrow K J, Debreu G. Existence of an equilibrium for a competitive economy. Econometrica, 1954, 22(3): 265-290
doi: 10.2307/1907353 |
[2] |
Sonnenschein H. Do Walras' identity and continuity characterize the class of community excess demand functions? J Econom Theory, 1973, 6(4): 345-354
doi: 10.1016/0022-0531(73)90066-5 |
[3] |
Mantel R R. On the characterization of aggregate excess demand. J Econom Theory, 1974, 7(3): 348-353
doi: 10.1016/0022-0531(74)90100-8 |
[4] |
Debreu G. Excess demand functions. J Math Econom, 1974, 1(1): 15-21
doi: 10.1016/0304-4068(74)90032-9 |
[5] |
Tian G. On the existence of price equilibrium in economies with excess demand functions. Econ Theory Bull, 2016, 4(1): 5-16
doi: 10.1007/s40505-015-0091-7 |
[6] | Anh L Q, Duoc P T, Duy T Q. Existence and well-posedness for excess demand equilibrium problems. Numer Algebra Control Optim, 2023, 13(1): 45-52 |
[7] |
Zeng J, Li S J, Zhang W Y, et al. Stability results for convex vector-valued optimization problems. Positivity, 2011, 15(3): 441-453
doi: 10.1007/s11117-010-0093-5 |
[8] |
Li X B, Peng Z Y, Lin Z. Convergence results for Henig proper efficient solution sets of vector optimization problems. Numer Funct Anal Optim, 2014, 35(11): 1419-1434
doi: 10.1080/01630563.2014.884585 |
[9] |
Peng Z Y, Yang X M. Painlevé-Kuratowski convergences of the solution sets for perturbed vector equilibrium problems without monotonicity. Acta Math Appl Sin Engl Ser, 2014, 30(4): 845-858
doi: 10.1007/s10255-014-0426-4 |
[10] |
Fort M K. Essential and non essential fixed points. Amer J Math, 1950, 72(2): 315-322
doi: 10.2307/2372035 |
[11] | Dierker E. Topological Methods in Walrasian Economics. Berlin: Springer, 1974 |
[12] | Tan K K, Yu J, Yuan X Z. Stability of production ecomomies. J Aust Math Soc, 1996, 61(1): 162-170 |
[13] | 向淑文, 张石生. 生产经济平衡点的极小本质集与本质连通区. 应用数学和力学, 2000, 21(8): 817-822 |
Xiang S W, Zhang S S. The minimal essential set and essential connected region of the equilibrium point of production economy. Appl Math Mech, 2000, 21(8): 817-822 | |
[14] |
王能发, 杨哲, 刘自鑫. 一般经济均衡价格点集的通有稳定性和本质连通区. 系统科学与数学, 2017, 37(1): 196-202
doi: 10.12341/jssms13053 |
Wang N F, Yang Z, Liu Z X. The generic stability and essential components of the price point set of general economic equilibrium. J Systems Sci Math Sci, 2017, 37(1): 196-202
doi: 10.12341/jssms13053 |
|
[15] |
Kapoor S, Lalitha C S. Essential stability in unified vector optimization. J Global Optim, 2021, 80(1): 161-175
doi: 10.1007/s10898-021-00996-2 |
[16] |
Xu Y D, Zhang P P. Connectedness of solution sets of strong vector equilibrium problems with an application. J Optim Theory Appl, 2018, 178(1): 131-152
doi: 10.1007/s10957-018-1244-2 |
[17] |
Fort M K. Points of continuity of semi-continuous functions. Publ Math Debrecen, 1951, 2(1951): 100-102
doi: 10.5486/PMD |
[18] |
Long X J, Huang Y Q, Tang L P. Generic stability of the solution mapping for set-valued optimization problems. J Inequal Appl, 2015, 2015(1): 1-8
doi: 10.1186/1029-242X-2015-1 |
[19] |
Zeng J, Li S J, Zhang W Y, et al. Hadamard well-posedness for a set-valued optimization problem. Optim Lett, 2013, 7(3): 559-573
doi: 10.1007/s11590-011-0439-3 |
[20] |
Qiu Q, Yang X. Some properties of approximate solutions for vector optimization problem with set-valued functions. J Global Optim, 2010, 47(1): 1-12
doi: 10.1007/s10898-009-9452-9 |
[1] | Caiyun Xiao,Xiangkai Sun. Characterization of the Radius of the Robust Feasibility for a Class of Uncertain Convex Optimization Problems with Polynomial Constraints [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1551-1559. |
[2] | Wending Xu,Ting Zhong. The Convergence of Nonsmooth Newton's Method [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1537-1550. |
[3] | Yajun Xie,Changfeng Ma. Algorithm with Order m + 1 Convergence for Weakly Nonlinear Complementarity Problems Derived From the Discretization of Free Boundary Problems [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1506-1516. |
[4] | Tingwei Pan,Suxiang He. The Greedy Simplex Algorithm for Double Sparsity Constrained Optimization Problems [J]. Acta mathematica scientia,Series A, 2022, 42(3): 920-933. |
[5] | Jing Yang,Xianjun Long. A New Projection Algorithm for Solving Pseudo-Monotone Variational Inequality and Fixed Point Problems [J]. Acta mathematica scientia,Series A, 2022, 42(3): 904-919. |
[6] | Jiaolang Wang,Donghui Fang. Approximate Optimality Conditions and Mixed Type Duality for a Class of Non-Convex Optimization Problems [J]. Acta mathematica scientia,Series A, 2022, 42(3): 651-660. |
[7] | Jing Zeng,Ruiting Hu. Stability of Benson Proper Efficient Solutions for Vector Optimization Problems [J]. Acta mathematica scientia,Series A, 2022, 42(1): 35-44. |
[8] | Yuehong He,Xianjun Long. A Inertial Contraction and Projection Algorithm for Pseudomonotone Variational Inequality Problems [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1897-1911. |
[9] | Yuying Zhao,Yuzhen Wen. Optimal Investment and Proportional Reinsurance Strategies to Minimize the Probability of Drawdown Under Ambiguity Aversion [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1147-1165. |
[10] | Yajun Xie. A Class of Efficient Modified Algorithms Based onHalley-Newton Methods [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1066-1078. |
[11] | Xinyi Feng,Xiangkai Sun. Characterizations of Farkas Lemmas for a Class of Fractional Optimization with DC Functions [J]. Acta mathematica scientia,Series A, 2021, 41(3): 827-836. |
[12] | Jing Zhang,Jinghu Yu. Parameter Resolution of Estimation Methods for Linear Regression Models [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1381-1392. |
[13] | Dongping Ye,Donghui Fang. Lagrange Dualities for Robust Composite Optimization Problems [J]. Acta mathematica scientia,Series A, 2020, 40(4): 1095-1107. |
[14] | Meng Li,Guolin Yu. Optimality of Robust Approximation Solutions for Uncertain Convex Optimization Problems [J]. Acta mathematica scientia,Series A, 2020, 40(4): 1007-1017. |
[15] | Donghui Fang,Liping Tian,Xianyun Wang. Strong Fenchel-Lagrange Duality for Convex Optimization Problems with Composite Function [J]. Acta mathematica scientia,Series A, 2020, 40(1): 20-30. |
|