Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (3): 921-929.
Previous Articles Next Articles
Wu Wenjun,Yang Guanghui,Fang Caiya,Yang Hui*()
Received:
2022-01-07
Revised:
2022-08-25
Online:
2023-06-26
Published:
2023-06-01
Contact:
Hui Yang
E-mail:huiyang@gzu.edu.cn
Supported by:
CLC Number:
Wu Wenjun,Yang Guanghui,Fang Caiya,Yang Hui. Generic Stability of Cooperative Equilibria for Leader-Follower Population Games[J].Acta mathematica scientia,Series A, 2023, 43(3): 921-929.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Sandholm W H. Population Games and Evolutionary Dynamics. London: MIT Press, 2010 |
[2] | Nash J. Noncooperative Games. Princetion: Princeton University, 1950 |
[3] | Stackelberg H V. Theory of the Market Economy. Oxford: Oxford University Press, 1952 |
[4] | Wu W T, Jiang J H. Essential equilibrium points of $n$-person non-cooperative games. Science in China, Ser A, 1962, 10: 1307-1322 |
[5] |
Yu J, Xiang S W. On essetnial components of the Nash equilibrium points. Nonlinear Analysis TMA, 1999, 38(2): 259-264
doi: 10.1016/S0362-546X(98)00193-X |
[6] |
Yu J, Luo Q. On essential components of the solution set of generalized game. Journal of Mathematical Analysis and Applications, 1999, 230(2): 303-310
doi: 10.1006/jmaa.1998.6202 |
[7] |
Yu J, Yang H. The essential components of the set of equilibrium points for set-valued maps. Journal of Mathematical Analysis and Applications, 2004, 300(2): 334-342
doi: 10.1016/j.jmaa.2004.06.042 |
[8] |
Zhou Y H, Yu J, Xiang S W. Essential stability in games with infinitely many pure strategies. International Journal of Game Theory, 2007, 35(4): 493-503
doi: 10.1007/s00182-006-0063-0 |
[9] | Yang H, Xiao X C. Essential components of Nash equilibria for games parametrized by payoffs and strategies. Nonlinear Analysis, 2009, 71(12): 2322-2326 |
[10] | Yang Z. On the existence and stability of solutions of a mixed general type of variational relation problems. Journal of Nonlinear Science and Applications, 2014, 337: 1-10 |
[11] |
Yang G H, Yang H. Stability of weakly pareto-Nash equilibria and pareto-nash equilibria for multiobjective population games. Set-Valued and Variational Analysis, 2017, 25(2): 427-439
doi: 10.1007/s11228-016-0391-6 |
[12] |
Yang G H, Yang H, Song Q Q. Stability of weighted Nash equilibria for multiobjective population games. J Nonlinear Sci Appl, 2016, 9(3): 4167-4176
doi: 10.22436/jnsa |
[13] |
仲崇轶. 群体博弈的有限理性问题及演化动力学研究. 贵州:贵州大学, 2020,
doi: 10.27047/d.cnki.ggudu.2020.000008 |
Zhong C Y. The Research of Bounded Rationality for Population Games and Evolutionary Dynamics. Guizhou: Guizhou University, 2020, doi:10.27047/d.cnki.ggudu.2020.000008
doi: 10.27047/d.cnki.ggudu.2020.000008 |
|
[14] |
赵薇. 基于参数不确定及主从结构等的群体博弈研究. 贵州:贵州大学, 2021,
doi: 10.27047/d.cnki.ggudu.2021.000015 |
Zhao W. Research on Population Games based on Uncertain Parameters and Leader-follower Structure. Guizhou: Guizhou University, 2021, doi:10.27047/d.cnki.ggudu.2021.000015
doi: 10.27047/d.cnki.ggudu.2021.000015 |
|
[15] |
Aumann R J. The core of a cooperative game without side payments. Transactions of the American Mathematical Society, 1961, 98(3): 539-552
doi: 10.1090/S0002-9947-1961-0127437-2 |
[16] |
Scarf H E. On the existence of a coopertive solution for a general class of $N$-person games. Journal of Economic Theory, 1971, 3(2): 169-181
doi: 10.1016/0022-0531(71)90014-7 |
[17] |
Ichiishi T. A social coalitional equilibrium existence lemma. Econometrica, 1981, 49(2): 369-377
doi: 10.2307/1913316 |
[18] |
Kajii A. A generalization of Scarf's theorem: An $\alpha$-core existence theorem without transitivity or completeness. Journal of Economic Theory, 1992, 56(1): 194-205
doi: 10.1016/0022-0531(92)90076-T |
[19] |
Yang Z, Ju Y. Existence and generic stability of cooperative equilibria for multi-leader-multi-follower games. Journal of Global Optimization, 2016, 65(3): 563-573
doi: 10.1007/s10898-015-0393-1 |
[20] |
Yang Z, Zhang H Q. Essential stability of cooperative equilibria for population games. Optimization Letters, 2019, 13(7): 1573-1582
doi: 10.1007/s11590-018-1303-5 |
[21] |
Yu C, Yu J. Bounded rationality in multiobjective games. Nonlinear Anal-TMA, 2007, 67(3): 930-937
doi: 10.1016/j.na.2006.06.050 |
[22] | 俞建. 博弈论与非线性分析. 北京: 科学出版社, 2008 |
Yu J. Game Theory and Nonlinear Analysis. Beijing: Science Press, 2008 | |
[23] | 俞建. 博弈论选讲. 北京: 科技出版社, 2014 |
Yu J. Lectures on Game Theory. Beijing: Science Press, 2014 |
[1] | Li Yongxiang,Wei Qilin. Existence Results of Periodic Solutions for Semilinear Evolution Equation in Banach Spaces and Applications [J]. Acta mathematica scientia,Series A, 2023, 43(3): 702-712. |
[2] | Feng Meiqiang, Zhang Xuemei. On the Optimal Global Estimates of Boundary Blow-up Solutions to the Monge-Ampère Equation [J]. Acta mathematica scientia,Series A, 2023, 43(1): 181-202. |
[3] | Baoying Du,Jinxing Liu. Global Regularity for the Incompressible 3D Hall-Magnetohydrodynamics with Partial Dissipation [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1754-1767. |
[4] | Qiang Li,Lishan Liu. Existence of Periodic Mild Solutions for Fractional Evolution Equations with Periodic Impulses [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1433-1450. |
[5] | Heqian Lu,Zhengce Zhang. The Critical Exponents for the Evolution p-Laplacian Equation with Nonlinear Gradient Terms [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1381-1397. |
[6] | Nan Deng,Meiqiang Feng. Positive Doubly Periodic Solutions To Telegraph Equations: Existence, Uniqueness, Multiplicity and Asymptotic Behavior [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1360-1380. |
[7] | Shaowen Yao,Wenjie Li,Zhibo Cheng. Nondegeneracy and Uniqueness of Periodic Solution for Third-Order Nonlinear Differential Equations [J]. Acta mathematica scientia,Series A, 2022, 42(2): 454-462. |
[8] | Shijie Shi,Zhengrong Liu,Hui Zhao. Boundedness and Stabilization of a Chemotaxis Model Describing Tumor Invasion with Signal-Dependent Motility [J]. Acta mathematica scientia,Series A, 2022, 42(2): 502-519. |
[9] | Tong Tang,Cong Niu. Global Existence of Weak Solutions to the Quantum Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2022, 42(2): 387-400. |
[10] | Tong Zhao,Hailong Yuan,Gaihui Guo. Positive Solutions of a Predator-Prey Model with Modified Leslie-Gower Type [J]. Acta mathematica scientia,Series A, 2022, 42(1): 176-186. |
[11] | Lianfeng Yang,Xiaoyu Zeng. Existence and Blow-Up Behavior of Ground State Solutions for Pseudo-Relativistic Schrödinger Equations [J]. Acta mathematica scientia,Series A, 2022, 42(1): 165-175. |
[12] | Min Zhu,Mengli Liu. A Dengue Fever Model Incorporating Heterogeneous Cross-Diffusion [J]. Acta mathematica scientia,Series A, 2022, 42(1): 201-215. |
[13] | Jianzhong Min,Xiangao Liu,Zixuan Liu. Serrin's Type Solutions of the Incompressible Liquid Crystals System [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1671-1683. |
[14] | Zaiyun Zhang,Zhenhai Liu,Youjun Deng. Global Existence and General Decay for a Nonlinear Viscoelastic Equation with Time-Varying Delay and Velocity-Dependent Material Density [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1684-1704. |
[15] | Yuge Du,Shuying Tian. Existence and Blow-Up of a Parabolic Equation with Logarithmic Nonlinearity [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1816-1829. |
|