Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (1): 291-304.
Previous Articles Next Articles
Liu Fuqin,Peng Jianwen*(),Luo Honglin
Received:
2022-03-31
Revised:
2022-08-05
Online:
2023-02-26
Published:
2023-03-07
Supported by:
CLC Number:
Liu Fuqin, Peng Jianwen, Luo Honglin. Convergence Analysis of Bregman ADMM for Three-Block Nonconvex Indivisible Optimization Problems with Linearization Technique[J].Acta mathematica scientia,Series A, 2023, 43(1): 291-304.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Banerjee A, Merugu S, Dhillon I, Ghosh J. Clustering with bregman divergences. Journal of Machine Learning Research, 2005, 6: 1705-1749 |
[2] |
Bolte J, Daniilidis A, Ley O, et al. Characterizations of Lojasiewicz inequalities and applications: subgradient flows, talweg, convexity. Transactions of the American Mathematical Society, 2010, 362(6): 3319-3363
doi: 10.1090/S0002-9947-09-05048-X |
[3] |
Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations Trends in Machine Learning, 2010, 3(1): 1-122
doi: 10.1561/2200000016 |
[4] | Bregman L M. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 1967, 7(3): 200-217 |
[5] |
Chao M T, Cheng C Z, Zhang H B. A linearized alternating direction method of multipliers with substitution procedure. Asia-Pacific Journal of Operational Research, 2015, 32(3): 1550011
doi: 10.1142/S0217595915500116 |
[6] | Chao M T, Deng Z, Jian J B. Convergence of linear Bregman ADMM for nonconvex and nonsmooth problems with nonseparable structure. Complexity, 2020, 2020: Art ID 6237942 |
[7] |
Chao M T, Zhang Y, Jian J B. An inertial proximal alternating direction method of multipliers for nonconvex optimization. International Journal of Computer Mathematics, 2021, 98(6): 1199-1217
doi: 10.1080/00207160.2020.1812585 |
[8] |
Chen C H, He B S, Ye Y Y, et al. The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Mathematical Programming, 2016, 155: 57-79
doi: 10.1007/s10107-014-0826-5 |
[9] |
Deng W, Yin W T. On the global and linear convergence of the generalized alternating direction method of multipliers. Journal of Scientific Computing, 2016, 66(3): 889-916
doi: 10.1007/s10915-015-0048-x |
[10] |
Feng J K, Zhang H B, Cheng C Z, et al. Convergence analysis of L-ADMM for multi-block linear-constrained separable convex minimization problem. Journal of the Operations Research Society of China, 2015, 3(4): 563-579
doi: 10.1007/s40305-015-0084-0 |
[11] |
Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Computers and Mathematics with Applications, 1976, 2(1): 17-40
doi: 10.1016/0898-1221(76)90003-1 |
[12] | Glowinski R, Marroco A. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires. Journal of E-quine Veterinary Science, 1975, 2(2): 41-76 |
[13] |
Guo K, Han D R, Wang D Z W, et al. Convergence of ADMM for multi-block nonconvex separable optimization models. Frontiers of Mathematics in China, 2017, 12(5): 1139-1162
doi: 10.1007/s11464-017-0631-6 |
[14] |
Guo K, Hand D R, Wu T T. Convergence of alternating direction method for minimizing sum of two nonconvex functions with linear constraints. International Journal of Computer Mathematics, 2017, 94(8): 1653-1669
doi: 10.1080/00207160.2016.1227432 |
[15] | Guo K, Wang X. Convergence of generalized alternating direction method of multipliers for nonseparable nonconvex objective with linear constraints. Journal of Mathematical Research with Applications, 2018, 38(5): 523-540 |
[16] |
Hong M Y, Lou Z Q, Razaviyayn M. Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM Journal on Optimization, 2016, 26(1): 337-364
doi: 10.1137/140990309 |
[17] |
Li M, Sun D F, Toh K C. A convergent 3-blocksemi-proximal ADMM for convex minimization problems with one strongly convex block. Asia-Pacific Journal of Operational Research, 2015, 32(4): 1550024
doi: 10.1142/S0217595915500244 |
[18] | Rockafellar R T, Wets R J B. Variational Analysis. Berlin: Springer Science and Business Media, 2009 |
[19] | Wang F H, Cao W F, Xu Z B. Convergence of multi-block Bregman ADMM for nonconvex composite problems. Science China Information Sciences, 2018, 61(12): 1-12 |
[20] | Wang F H, Xu Z B, Xu H K. Convergence of Bregman alternating direction method with multipliers for nonconvex composite problems. arXiv: 1410.8625 |
[21] | Wang H H, Banerjee A. Bregman alternating direction method of multipliers//Ghahramani Z, Welling M, Cortes C, et al. Advances in Neural Information Processing Systems, 2014: 2816-2824 |
[22] |
Xu Z B, Chang X Y, Xu F M, Zhang H. $L_\frac{1}{2}$ regularization: a thresholding representation theory and a fast solver. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23: 1013-1027
doi: 10.1109/TNNLS.2012.2197412 |
[23] |
Yang W H, Han D. Linear Convergence of the alternating direction method of multipliers for a class of convex optimization problems. SIAM Journal on Numerical Analysis, 2016, 54(2): 625-640
doi: 10.1137/140974237 |
[24] |
Yashtini M. Multi-block nonconvex nonsmooth proximal ADMM: Convergence and rates Under Kurdyka-ojasiewicz property. Journal of Optimization Theory and Applications, 2021, 190(3): 966-998
doi: 10.1007/s10957-021-01919-7 |
[25] | Zeng J S, Fang J, Xu Z B. Sparse SAR imaging based on $L_\frac{1}{2}$ regularization. Sci China Infor Sci, 2012, 55: 1755-1775 |
[26] |
Zeng J S, Lin S B, Wang Y, et al. $L_\frac{1}{2}$ Regularization: Convergence of iterative half thresholding algorithm. IEEE Transactions on Signal Processing, 2014, 62(9): 2317-2329
doi: 10.1109/TSP.2014.2309076 |
[27] |
Zeng J S, Xu Z B, Zhang B, et al. Accelerated $L_\frac{1}{2}$ regularization based SAR imaging via BCR and reduced Newton skills. Signal Processing, 2013, 93: 1831-184
doi: 10.1016/j.sigpro.2012.12.017 |
[1] | Wei Hanyu, Xia Tiecheng. Quasi-Periodic Solution of the Generalized Broer-Kaup-Kupershmidt Soliton Equation [J]. Acta mathematica scientia,Series A, 2016, 36(2): 317-327. |
[2] | ZHANG Ling, ZHU Hong-Ling. The Bargmann Symmetry Constraint and Binary Nonlinearization of the Super Li System [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1287-1295. |
[3] | Wang Qinlong; Liu Yirong. Isochronous Center for a Class of Quintic System [J]. Acta mathematica scientia,Series A, 2007, 27(6): 1044-1053. |
[4] |
Shen Peiping;Yang Changsen.
Algorithm of Global Optimization for Generalized Geometric Programming [J]. Acta mathematica scientia,Series A, 2006, 26(3): 382-386. |
[5] | XU Xi-Xiang, WANG Shi-Fan. A Hierarchy of Discrete Generalized Hamiltonian Systems and a New Integrable Symplectic Map [J]. Acta mathematica scientia,Series A, 2003, 23(3): 298-305. |
[6] | Zhou Ruguang. A Method to Seek the Finite-Band Solution of Soliton Equation [J]. Acta mathematica scientia,Series A, 1998, 18(2): 228-234. |
|