Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (6): 1826-1835.
Previous Articles Next Articles
Received:
2021-03-29
Online:
2022-12-26
Published:
2022-12-16
Contact:
Bo Li
E-mail:libo5181923@163.com
Supported by:
CLC Number:
Bo Li,Ziwei Liang. Stability of Stage-Structured Predator-Prey Models with Beddington-DeAngelis Functional Response[J].Acta mathematica scientia,Series A, 2022, 42(6): 1826-1835.
1 |
Pang P Y H , Wang M X . Strategy and stationary pattern in a three-species predator-prey model. J Diff Eqns, 2004, 200 (2): 245- 273
doi: 10.1016/j.jde.2004.01.004 |
2 | Pang P Y H , Wang M X . Qualitative analysis of a ratio-dependent predator-prey system with diffusion. Proc Roy Soc Edinburgh, 2003, 133A (4): 919- 942 |
3 |
Arditi R , Ginzburg L R . Coupling in predator-prey dynamics: ratio-dependence. J Theor Biol, 1989, 139, 311- 326
doi: 10.1016/S0022-5193(89)80211-5 |
4 |
Wang Z G , Wu J H . Qualitative analysis for a ratio-dependent predator-prey model with stage structure and diffusion. Nonlinear Analysis: Real World Applications, 2008, 9 (5): 2270- 2287
doi: 10.1016/j.nonrwa.2007.08.004 |
5 |
Jost C , Arino O , Arditi R . About deterministic extinction in ratio-dependent predator-prey models. Bull Math Biol, 1999, 61 (1): 19- 32
doi: 10.1006/bulm.1998.0072 |
6 |
Yi F Q , Wei J J , Shi J P . Diffusion-driven instability and bifurcation in the Lengyel-Epstein system. Nonlinear Analysis: Real World Applications, 2008, 9, 1038- 1051
doi: 10.1016/j.nonrwa.2007.02.005 |
7 |
Du Y H , Hsu S B . A diffusive predator-prey model in heterogeneous environment. J Diff Eqns, 2004, 203 (2): 331- 364
doi: 10.1016/j.jde.2004.05.010 |
8 | Yousefnezhad M , Mohammadi S A . Stability of a predator-prey system with prey taxis in a general class of functional responses. Acta Mathematica Scientia, 2016, 36B (1): 62- 72 |
9 | Lin Z G , Pedersen M . Stability in a diffusive food-chain model with Michaelis-Menten functional response. Nonlinear Analysis: Theory Methods & Applications, 2004, 57, 421- 433 |
10 |
Liu M , Wang K . Global stability of stage-structured predator-prey models with Beddington-DeAngelis functional response. Commun Nonlinear Sci Numer Simula, 2011, 16 (9): 3792- 3797
doi: 10.1016/j.cnsns.2010.12.026 |
11 | Henry D. Geometric Theory of Semilinear Parabolic Equations. Berlin: Springer-Verlag, 1993 |
12 |
Brown K J , Dunne P C , Gardner R A . A semilinear parabolic system arising in the theory of superconductivity. J Diff Equa, 1981, 40, 232- 252
doi: 10.1016/0022-0396(81)90020-6 |
13 | 王明新. 非线性抛物型方程. 北京: 科学出版社, 1993 |
Wang M X . Nonlinear Parabolic Equation of Parabolic Type. Beijing: Science Press, 1993 |
[1] | Mingting Wang,Guanghui Yang,Hui Yang. Stability of Weak NS Equilibria for Population Games with Uncertain Parameters Under Bounded Rationality [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1812-1825. |
[2] | Zhanping Ma,Haifeng Huo,Hong Xiang. Dynamics and Patterns for a Diffusive Leslie-Gower Predator-Prey Model with Michaelis-Menten Type Harvesting in Prey [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1575-1591. |
[3] | Meng Deng,Rui Xu. Stability Analysis of an HIV Infection Dynamic Model with CTL Immune Response and Immune Impairment [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1592-1600. |
[4] | Hongxing Wu,Dengbin Yuan,Shenghua Wang. Asymptotic Stability Analysis of Solutions to Transport Equations in Structured Bacterial Population Growth [J]. Acta mathematica scientia,Series A, 2022, 42(3): 807-817. |
[5] | Wenli Zheng,Jia Tang,Cairong Chen. A Dynamic Model for a Class of New Generalized Absolute Value Equations [J]. Acta mathematica scientia,Series A, 2022, 42(3): 818-825. |
[6] | Ning-An LAI, Wei XIANG, Yi ZHOU. GLOBAL INSTABILITY OF MULTI-DIMENSIONAL PLANE SHOCKS FOR ISOTHERMAL FLOW [J]. Acta mathematica scientia,Series A, 2022, 42(3): 887-902. |
[7] | Tong Zhao,Hailong Yuan,Gaihui Guo. Positive Solutions of a Predator-Prey Model with Modified Leslie-Gower Type [J]. Acta mathematica scientia,Series A, 2022, 42(1): 176-186. |
[8] | Jing Zeng,Ruiting Hu. Stability of Benson Proper Efficient Solutions for Vector Optimization Problems [J]. Acta mathematica scientia,Series A, 2022, 42(1): 35-44. |
[9] | Chun Wang,Tianzhou Xu. Hyers-Ulam-Rassias Stability on a Class of Generalized Fractional Systems [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1791-1804. |
[10] | Jiang Li,Guijie Lan,Shuwen Zhang,Chunjin Wei. Dynamics Analysis of a Stochastic Glucose-Insulin Model [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1937-1949. |
[11] | Dandan Sun,Yingke Li,Zhidong Teng,Tailei Zhang. Analysis of the Stability for Measles Epidemic Model with Age-Structured [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1950-1968. |
[12] | Xin Xie,Jianquan Li,Yuping Wang,Dian Zhang. A Qualitative Analysis of a Tumor-Immune System with Antigenicity [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1969-1979. |
[13] | Haiyun Deng,Hui Liu,Wenjing Song. Finite Difference Scheme for the Nonhomogeneous Initial Boundary Value Problem of Critical Schrödinger Map [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1311-1322. |
[14] | Zaiyong Feng,Ning Chen,Yongpeng Tai,Zhengrong Xiang. On the Observer Design for Fractional Singular Linear Systems [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1529-1544. |
[15] | Dongxia Fan,Dongxia Zhao,Na Shi,Tingting Wang. The PDP Feedback Control and Stability Analysis of a Diffusive Wave Equation [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1088-1096. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 138
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 105
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|