Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (3): 887-902.doi: 10.1007/s10473-022-0305-7
• Articles • Previous Articles Next Articles
Ning-An LAI1,2, Wei XIANG3, Yi ZHOU4
Received:
2020-07-04
Online:
2022-06-26
Published:
2022-06-24
Contact:
Ning-An LAI,E-mail:ninganlai@lsu.edu.cn
E-mail:ninganlai@lsu.edu.cn
Supported by:
CLC Number:
Ning-An LAI, Wei XIANG, Yi ZHOU. GLOBAL INSTABILITY OF MULTI-DIMENSIONAL PLANE SHOCKS FOR ISOTHERMAL FLOW[J].Acta mathematica scientia,Series A, 2022, 42(3): 887-902.
[1] | Christodoulou D, Miao S. Compressible flow and Euler's equations[M]. Beijing:Higher Education Press, 2014 |
[2] | Li T T, Zhou Y, Kong D X. Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems[J]. Communications in Partial Differential Equations, 1994, 19(7/8):1263-1317 |
[3] | Sideris T C. Formation of singularities in three-dimensional compressible fluids[J]. Communications in Mathematical Physics, 1985, 101(4):475-485 |
[4] | Bressan A. Hyperbolic Systems of Conservation Laws[M]//Hyperbolic systems of conservation laws. Oxford:Oxford University Press, 2000 |
[5] | Dafermos C. Hyperbolic conservation laws in continuum physics[M]. Third edition. Heidelberg:Springer-Verlag, 2010 |
[6] | Xin Z P. Some current topics in nonlinear conservation laws[M]//AMS/IP Stud Adv Math, 15. Providence, RI:Amer Math Soc, 2000 |
[7] | Bae M, Chen G Q, Feldman M. Regularity of solutions to regular shock reflection for potential flow[J]. Inventiones Mathematicae, 2009, 175(3):505-543 |
[8] | Cao G W, Xiang W, Yang X Z. Global structure of admissible solutions of multi-dimensional non-homogeneous scalar conservation law with Riemann-type data[J]. Journal of Differential Equations, 2017, 263(2):1055-1078 |
[9] | Chen G Q, Feldman M. Global Solutions of Shock Reflection by Large-Angle Wedges for Potential Flow[J]. Annals of Mathematics, 2010, 171(2):1067-1182 |
[10] | Chen G Q, Feldman M. Mathematics of Shock Reflection-Diffraction and von Neumann Conjectures[M]. Princeton:Princeton University Press, 2018 |
[11] | Chen G Q, Feldman M, Hu J C, et al. Loss of Regularity of Solutions of the Lighthill Problem for Shock Diffraction for Potential Flow[J]. SIAM J Math Anal, 2020, 52(2):1096-1114 |
[12] | Chen G Q, Feldman M, Xiang W. Convexity of Self-Similar Transonic Shocks and Free Boundaries for Potential Flow. arXiv:1803.02431, 2018 |
[13] | Li J Q, Zheng Y X. Interaction of Rarefaction Waves of the Two-Dimensional Self-Similar Euler Equations[J]. Archive for Rational Mechanics Analysis, 2009, 193(3):623-657 |
[14] | Zheng Y X. Systems of conservation laws, Two-dimensional Riemann Problems[M]. Progress in Nonlinear Differential Equations and their Applications, 38. Boston, MA:Birkhäuser Boston, Inc, 2001 |
[15] | Yang C L, Cao G W, Yang X Z. Uniform formula for the Riemann solutions of a scalar combustion model[J]. Acta Mathematica Scientia, 2016, 36B(5):1405-1418 |
[16] | Cao G W, Hu K, Yang X Z. Formula of global smooth solution for non-homogeneous M-D conservation law with unbounded initial value[J]. Acta Mathematica Scientia, 2015, 35B(2):508-526 |
[17] | Courant R, Friedrichs K. Supersonic flow and shock waves[M]. New York:Wiley Interscience, 1948 |
[18] | Bae M, Chen G Q, Feldman M. Prandtl-Meyer reflection for supersonic flow past a solid ramp[J]. Quart Appl Math, 2013, 71(3):583-600 |
[19] | Chen S X. Existence of Stationary Supersonic Flows Past a Pointed Body[J]. Archive for Rational Mechanics and Analysis, 2001, 156(2):141-181 |
[20] | Chen S X. Mach Configuration in Pseudo-Stationary Compressible Flow[J]. Journal of the American Mathematical Society, 2008, 21(1):63-100 |
[21] | Chen S X, Xin Z P, Yin H C. Global Shock Waves for the Supersonic Flow Past a Perturbed Cone[J]. Communications in Mathematical Physics, 2002, 228(1):47-84 |
[22] | Elling V, Liu T P. Supersonic flow onto a solid wedge[J]. Communications on Pure Applied Mathematics, 2008, 61(10):1347-1448 |
[23] | Fang B X, Liu L, Yuan H R. Global Uniqueness of Steady Transonic Shocks in Two-Dimensional Compressible Euler Flows[J]. Archive for Rational Mechanics Analysis, 2010, 207(1):317-345 |
[24] | Fang B X, Xiang W. The uniqueness of transonic shocks in supersonic flow past a 2-D wedge[J]. Journal of Mathematical Analysis Applications, 2016, 437(1):194-213 |
[25] | Li J, Ingo W, Yin H C. On the Global Existence and Stability of a Multi-Dimensional Supersonic Conic Shock Wave[J]. Communications in Mathematical Physics, 2014, 329(2):609-640 |
[26] | Li J, Witt I, Yin H C. Global multidimensional shock waves for 2-D and 3-D unsteady potential flow equations[J]. SIAM J Math Anal, 2018, 50:933-1009 |
[27] | Qu A F, Xiang W. Three-dimensional steady supersonic Euler flow past a concave cornered wedge with lower pressure at the downstream[J]. Arch Ration Mech Anal, 2018, 228(2):431-476 |
[28] | Wang Z, Yin H C. Local Structural Stability of a Multidimensional Centered Rarefaction Wave for the Three-Dimensional Steady Supersonic Euler Flow around a Sharp Corner[J]. Siam Journal on Mathematical Analysis, 2010, 42(4):1639-1687 |
[29] | Wang Y G, Yu F. Structural stability of supersonic contact discontinuities in three-dimensional compressible steady flows[J]. SIAM J Math Anal, 2015, 47:1291-1329 |
[30] | Wang Y G, Yuan H R. Weak stability of transonic contact discontinuities in three-dimensional steady non-isentropic compressible Euler flows[J]. Zeitschrift Fur Angewandte Mathematik Und Physik, 2015, 66(2):341-388 |
[31] | Xin Z P, Yin H C. Global multidimensional shock wave for the steady supersonic flow past a three-dimensional curved cone[J]. Analysis Applications, 2006, 4(2):101-132 |
[32] | Zhang Y Q. Steady supersonic flow past an almost straight wedge with large vertex angle[J]. J Differential Equations, 2003, 192:1-46 |
[33] | Blokhin A M. Estimation of the energy integral of a mixed problem for gas dynamics equations with boundary conditions on the shock wave (in Russian)[J]. Sibirsk Mat Zh, 1981, 22(4):23-51 |
[34] | Blokhin A, Trakhinin Y. Stability of Strong Discontinuities in Fluids and MHD[J]. Handbook of Mathematical Fluid Dynamics, 2002, 1(2):545-652 |
[35] | Majda A. The stability of multi-dimensional shock fronts[J]. Memoirs of the American Mathematical Society, 1983, 41 (275):iv+95 pp |
[36] | Majda A. The existence of multidimensional shock fronts[J]. Memoirs of the American Mathematical Society, 1983, 43 (281):v+93 pp |
[37] | Métivier G. Stability of Multi-Dimensional Weak Shocks[J]. Comm Partial Differential Equations, 1990, 15:983-1028 |
[38] | Alinhac S. Existence d'ondes de rarefaction pour des systémes quasi-linéaires hyperboliques multidimensionnels[J]. Communications in Partial Differential Equations, 1989, 14(2):173-230 |
[39] | Coulombel J, Secchi P. Nonlinear compressible vortex sheets in two-dimensions[J]. Ann Sci Ec Norm Super, 2008, 41(1):85-139 |
[40] | Chen S X, Li D N. Cauchy problem with general discontinuous initial data along a smooth curve for 2-d Euler system[J]. Journal of Differential Equations, 2014, 257(6):1939-1988 |
[41] | Godin P. Long time existence of a class of perturbations of planar shock fronts for second order hyperbolic conservation laws[J]. Duke Mathematical Journal, 1990, 60(2):425-463 |
[42] | Li T T, Zhao Y C. Global shock solutions to a class of piston problems for the system of one-dimensional isentropic flow[J]. Chinese Ann Math Ser B, 1991, 12(5):495-499 |
[43] | Li T T, Wang L B. Global propagation of regular nonlinear hyperbolic waves[M]. Progress in Nonlinear Differential Equations and their Applications, 76. Birkhäuser Boston, 2009 |
[44] | Li T T, Zhou Y. Nonlinear Wave Equations (in Chinese)[M]//Series in Contemporary Mathematics. Shanghai:Shanghai Scientific Technical Publishers, 2016 |
|