[1] Kirchhoff G. Mechanik. Leipzig:Teubner, 1883 [2] Ma T F, Rivera J E. Positive solutions for a nonlinear nonlocal elliptic transmission problem. Appl Math Lett, 2003, 16(2):243-248 [3] Perera K, Zhang Z. Nontrivial solutions of Kirchhoff-type problems via the Yang index. J Differential Equations, 2006, 221(1):246-255 [4] Mao A, Zhang Z. Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition. Nonlinear Anal, 2009, 70(3):1275-1287 [5] Alves C O, Corr^{e}a F J S A, Figueiredo G M. On a class of nonlocal elliptic problems with critical growth. Differ Equ Appl, 2010, 2(2):409-417 [6] Naimen D. Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent. Nonlinear Differ Equ Appl, 2014, 21(6):885-914 [7] 樊自安,吴庆华.包含次临界和临界指数以及加权函数的Kirchhoff方程.应用数学学报, 2019, 42(2):278-288 Fan Z, Wu Q. One Kirchhoff equation involving subcritical or critical Sobolev exponents and weigh function. Acta Math Appl Sin, Chinese Ser, 2019, 42(2):278-288 [8] Furtado M F, de Oliveira L D, da Silva J P P. Multiple solutions for a Kirchhoff equation with critical growth. Z Angew Math Phys, 2019, 70:Article number 11 [9] Faraci F, Farkas C. On a critical Kirchhoff-type problem. Nonlinear Anal, 2020, 192:111679 [10] Jin J, Wu X. Infinitely many radial solutions for Kirchhoff-type problems in $R ^{N}$. J Math Anal Appl, 2010, 369(2):564-574 [11] Li Y, Li F, Shi J. Existence of a positive solution to Kirchhoff type problems without compactness conditions. J Differential Equations, 2012, 253(7):2285-2294 [12] He X, Zou W. Existence and concentration behavior of positive solutions for a Kirchhoff type equation in $R ^3$. J Differential Equations, 2012, 252(2):1813-1834 [13] Alves C O, Giovany M F. Nonlinear perturbations of a periodic Kirchhoff equation in $R ^{N}$. Nonlinear Anal, 2012, 75(5):2750-2759 [14] He X, Zou W. Ground states for nonlinear Kirchhoff equations with critical growth. Ann Mat Pur Appl, 2014, 193(2):473-500 [15] Li Y, Li F, Shi J. Existence of positive solutions to Kirchhoff type problems with zero mass. J Math Anal Appl, 2014, 410(1):361-374 [16] Guo Z. Ground states for Kirchhoff equations without compact condition. J Differential Equations, 2015, 259(7):2884-2902 [17] Ambrosetti A, Rabinowitz P. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14(4):349-381 [18] Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun Pure Appl Math, 1983, 36(4):437-477 [19] Lions P L. The concentration-compactness principle in the calculus of variations, The limit case, Part 1. Rev Mat Iberoam, 1985, 1(1):145-201 [20] Chabrowski J. Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents. Calc Var, 1995, 3(4):493-512 [21] Alves C O, Souto M A S, Montenegro M. Existence of solution for two classes of elliptic problems in $R ^{N}$ with zero mass. J Differential Equations, 2012, 252(10):5735-5750 [22] Jeanjean L. On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $R ^N$. Proc Roy Soc Edinburgh Sect A:Math, 1999, 129(4):787-809 |