Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (3): 1125-1140.doi: 10.1007/s10473-022-0318-2
• Articles • Previous Articles Next Articles
Jinlan TAN, Yongyong LI, Chunlei TANG
Received:
2020-12-11
Online:
2022-06-26
Published:
2022-06-24
Contact:
Chunlei TANG,E-mail:tangcl@swu.edu.cn
E-mail:tangcl@swu.edu.cn
Supported by:
CLC Number:
Jinlan TAN, Yongyong LI, Chunlei TANG. THE EXISTENCE AND CONCENTRATION OF GROUND STATE SOLUTIONS FOR CHERN-SIMONS-SCHRÖDINGER SYSTEMS WITH A STEEP WELL POTENTIAL[J].Acta mathematica scientia,Series A, 2022, 42(3): 1125-1140.
[1] | Bartsch T, Wang Z Q. Existence and multiplicity results for some superlinear elliptic problems on RN. Comm Partial Differential Equations, 1995, 20(10):1725-1741 |
[2] | Bartsch T, Wang Z Q. Multiple positive solutions for a nonlinear Schrödinger equation. Z Angew Math Phys, 2000, 51(3):366-384 |
[3] | Bergé L, Bouard A D, Saut J C. Blowing up time-dependent solutions of the planar, Chern-Simons gauged nonlinear Schrödinger equation. Nonlinearity, 1995, 8(2):235-253 |
[4] | Byeon J, Huh H, Seok J. Standing waves of nonlinear Schrödinger equations with the gauge field. J Funct Anal, 2012, 263(6):1575-1608 |
[5] | Byeon J, Huh H, Seok J. On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrödinger equations. J Differential Equations, 2016, 261(2):1285-1316 |
[6] | Chen S T, Zhang B L, Tang X H. Existence and concentration of semiclassical ground state solutions for the generalized Chern-Simons-Schrödinger system in H1(R2). Nonlinear Anal, 2019, 185:68-96 |
[7] | Chen Z, Tang X H, Zhang J. Sign-changing multi-bump solutions for the Chern-Simons-Schrödinger equations in R2. Adv Nonlinear Anal, 2019, 9(1):1066-1091 |
[8] | Cunha P L, D'Avenia P, Pomponio A, et al. A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity. Nonlinear Differential Equations Appl, 2015, 22(6):1831-1850 |
[9] | Huh H. Standing waves of the Schrödinger equation coupled with the Chern-Simons gauge field. J Math Phys, 2012, 53 (6):8pp |
[10] | Jackiw R, Pi S Y. Classical and quantal nonrelativistic Chern-Simons theory. Phys Rev, 1990, 42(10):3500-3513 |
[11] | Jackiw R, Pi S Y. Soliton solutions to the gauged nonlinear Schrödinger equation on the plane. Phys Rev Lett, 1990, 64(25):2969-2972 |
[12] | Jackiw R, Pi S Y. Self-dual Chern-Simons solitons. Progr Theoret Phys Suppl, 1992, 107:1-40 |
[13] | Jeanjean L. Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal, 1997, 28(10):1633-1659 |
[14] | Jeanjean L. On the existence of bounded Palais-Smale sequences and application to Landesman-Lazer-type problem set on RN. Proc Roy Soc Edinburgh Sect A, 1999, 129(4):787-809 |
[15] | Ji C, Fang F. Standing waves for the Chern-Simons-Schrödinger equation with critical exponential growth. J Math Anal Appl, 2017, 450(1):578-591 |
[16] | Jiang Y S, Pomponio A, Ruiz D. Standing waves for a gauged nonlinear Schrödinger equation with a vortex point. Commun Contemp Math, 2016, 18 (4):Article ID 1550074 20pp |
[17] | Kang J C, Li Y Y, Tang C L. Sign-Changing solutions for Chern-Simons-Schrödinger equations with asymptotically 5-Linear nonlinearity. Bull Malays Math Sci Soc, 2021, 44(2):711-731 |
[18] | Li G B, Luo X. Normalized solutions for the Chern-Simons-Schrödinger equation in R2. Ann Acad Sci Fenn Math, 2017, 42(1):405-428 |
[19] | Li G D, Li Y Y, Tang C L. Existence and concentrate behavior of positive solutions for Chern-Simons-Schrödinger systems with critical growth. Complex Var Elliptic Equ, 2021, 66(3):476-486 |
[20] | Liu B, Simth P, Tataru D. Local wellposedness of Chern-Simons-Schrödinger. Int Math Res Not, 2014, 2014(23):6341-6398 |
[21] | Pankov A, Bartsch T, Wang Z Q. Nonlinear Schrödinger equations with steep potential well. Commun Contemp Math, 2001, 3(4):549-569 |
[22] | Pomponio A, Ruiz D. Boundary concentration of a gauged nonlinear Schrödinger equation on large balls. Calc Var Partial Differential Equations, 2015, 53(1/8):289-316 |
[23] | Pomponio A, Ruiz D. A variational analysis of a gauged nonlinear Schrödinger equation. J Eur Math Soc, 2015, 17(6):1463-1486 |
[24] | Seok J. Infinitely many standing waves for the nonlinear Chern-Simons-Schrödinger equations. Adv Math Phys, 2015, 2015:1-7 |
[25] | Tang X H, Zhang J, Zhang W. Existence and concentration of solutions for the Chern-Simons-Schrödinger system with general nonlinearity. Results Math, 2017, 71(3/8):643-655 |
[26] | Wan Y Y, Tan J G. Standing waves for the Chern-Simons-Schrödinger systems without (AR) condition. J Math Anal Appl, 2014, 415(1):422-434 |
[27] | Wan Y Y, Tan J G. Concentration of semi-classical solutions to the Chern-Simons-Schrödinger systems. Nonlinear Differential Equations Appl, 2017, 24(3):28 |
[28] | Wan Y Y, Tan J G. The existence of nontrivial solutions to Chern-Simons-Schrödinger systems. Discrete Contin Dyn Syst, 2017, 37(5):2765-2786 |
[29] | Weinstein M I. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm Math Phys, 1983, 87(4):567-576 |
[30] | Willem M. Minimax theorems. Boston:Birkhäuser, 1996 |
[31] | Xia A. Existence, nonexistence and multiplicity results of a Chern-Simons-Schrödinger system. Acta Appl Math, 2020, 166:147-159 |
[32] | Xie W, Chen C. Sign-changing solutions for the nonlinear Chern-Simons-Schrödinger equations. Appl Anal, 2020, 99(5):880-898 |
[33] | Yuan J. Multiple normalized solutions of Chern-Simons-Schrödinger system. Nonlinear Differential Equations Appl, 2015, 22(6):1801-1816 |
[34] | Zhang N, et al. Ground state solutions for the Chern-Simons-Schrödinger equations with general nonlinearity. Complex Var Elliptic Equ, 2020, 65(8):1394-1411 |
[1] | Yanan Wang,Kaimin Teng. Ground State Solutions for Quasilinear Schrödinger Equation of Choquard Type [J]. Acta mathematica scientia,Series A, 2022, 42(3): 730-748. |
[2] | Xudong Shang,Jihui Zhang. Existence of Positive Ground State Solutions for the Choquard Equation [J]. Acta mathematica scientia,Series A, 2022, 42(3): 749-759. |
[3] | Qi LI, Chang-Lin XIANG. A FRACTIONAL CRITICAL PROBLEM WITH SHIFTING SUBCRITICAL PERTURBATION [J]. Acta mathematica scientia,Series A, 2022, 42(3): 1113-1124. |
[4] | Lei Ji,Jiafeng Liao. Existence of Positive Ground State Solutions for a Class of Kirchhoff Type Problems with Critical Exponent [J]. Acta mathematica scientia,Series A, 2022, 42(2): 418-426. |
[5] | Yanfang Mei,Youjun Wang. Three Types of Solutions for a Class of Nonlinear Schrödinger Equations [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1087-1093. |
[6] | Liwan Fang,Wennian Huang,Minqing Wang. Ground-State Solutions for Schrödinger-Maxwell Equations in the Critical Growth [J]. Acta mathematica scientia,Series A, 2019, 39(3): 475-483. |
[7] | Wen Qiu,Yimin Zhang,Ahmed Adam Abdelgadir. Existence of Nontrivial Solutions for a Class of Relativistic Nonlinear Schrödinger Equations [J]. Acta mathematica scientia,Series A, 2019, 39(1): 95-104. |
[8] | Wenjuan Tang, Zhengjie Zhang. Two Solutions for Quasilinear Elliptic Equation with Hardy Potential on RN [J]. Acta mathematica scientia,Series A, 2018, 38(6): 1153-1161. |
[9] | Wenbo Wang,Quanqing Li. Existence and Concentration of Nontrivial Solutions for the Fractional Schrödinger Equations with Sign-Changing Steep Well Potential [J]. Acta mathematica scientia,Series A, 2018, 38(5): 893-902. |
[10] | Yu Chun, Wan Youyan. The Existence of Ground State to the Generalized Choquard-Pekar Equation with Superlinear Nonlinearities [J]. Acta mathematica scientia,Series A, 2018, 38(2): 276-283. |
[11] | Gu Longjiang, Sun Zhiyu, Zeng Xiaoyu. The Existence of Minimizers for a Class of Constrained Variational Problem with Its Concentration Behavior [J]. Acta mathematica scientia,Series A, 2017, 37(3): 510-518. |
[12] | Xu Na, Ma Shiwang. Ground State Solutions for A Periodic Schrödinger Equation with Critical Sobolev Exponent [J]. Acta mathematica scientia,Series A, 2015, 35(4): 651-655. |
[13] | Deng Yihua, Luo Liping, Zhou Lijun. Existence of A Ground State Solution for A Class of Superlinear p-Laplace Equations with Negative Potential Functions [J]. Acta mathematica scientia,Series A, 2015, 35(3): 578-586. |
[14] | ZHANG Jian, TANG Xian-Hua, ZHANG Wen. ON GROUND STATE SOLUTIONS FOR SUPERLINEAR DIRAC EQUATION [J]. Acta mathematica scientia,Series A, 2014, 34(3): 840-850. |
[15] | LV Deng-Feng. Least Energy Solutions for a Class of Singular Critical Elliptic Systems [J]. Acta mathematica scientia,Series A, 2012, 32(6): 1136-1148. |
|