Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (5): 1537-1550.
Previous Articles Next Articles
Received:
2021-10-14
Online:
2022-10-26
Published:
2022-09-30
Contact:
Ting Zhong
E-mail:wd-xu@hotmail.com;zhongting89@sina.cn
Supported by:
CLC Number:
Wending Xu,Ting Zhong. The Convergence of Nonsmooth Newton's Method[J].Acta mathematica scientia,Series A, 2022, 42(5): 1537-1550.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Adly S , Cibulka R , Ngai H V . Newton's method for solving inclusions using set-valued approximations. SIAM J Optim, 2015, 25 (1): 159- 184
doi: 10.1137/130926730 |
2 |
Adly S , Ngai H V , Nguyen V V . Newton's method for solving generalized equations: Kantorovich's and Smale's approaches. J Math Anal Appl, 2016, 439 (1): 396- 418
doi: 10.1016/j.jmaa.2016.02.047 |
3 |
Adly S , Ngai H V , Vu N V . Stability of metric regularity with set-valued perturbations and application to Newton's method for solving generalized equations. Set-Valued Var Anal, 2017, 25 (3): 543- 567
doi: 10.1007/s11228-017-0438-3 |
4 |
Dontchev A L , Rockafellar R T . Newton's method for generalized equations: A sequential implicit function theorem. Math Program, 2010, 123 (1): 139- 159
doi: 10.1007/s10107-009-0322-5 |
5 | Geoffroy M H . Stability of Mann's iterates under metric regularity. Appl Math Comput, 2009, 215 (2): 686- 694 |
6 |
Aragón Artacho F J , Dontchev A L , Gaydu M , Geoffroy M H , Veliov V M . Metric regularity of Newton's iteration. SIAM J Control Optim, 2011, 49 (2): 339- 362
doi: 10.1137/100792585 |
7 |
Rashid M H , Yuan Y X . Metrically regular mappings and its application to convergence analysis of a confined Newton-type method for nonsmooth generalized equations. SCI China Math, 2020, 63 (1): 39- 60
doi: 10.1007/s11425-019-9757-0 |
8 |
Aragón Artacho F J , Dontchev A L , Geoffroy M H . Convergence of the proximal point method for metrically regular mappings. ESAIM Proc, 2007, 17, 1- 8
doi: 10.1051/proc:071701 |
9 |
Aragón Artacho F J , Gaydu M . A Lyusternik-Graves theorem for the proximal point method. Comput Optim Appl, 2012, 52 (3): 785- 803
doi: 10.1007/s10589-011-9439-6 |
10 |
Aragón Artacho F J , Geoffroy M H . Uniformity and inexact version of a proximal method for metrically regular mappings. J Math Anal Appl, 2007, 335 (1): 168- 183
doi: 10.1016/j.jmaa.2007.01.050 |
11 | Dontchev A L , Rockafellar R T . Implicit Functions and Solution Mappings. New York: Springer, 2014 |
12 |
Ioffe A D . Metric regularity and subdifferential calculus. Uspekhi Mat Nauk, 2000, 55 (3): 103- 162
doi: 10.4213/rm292 |
13 |
Ioffe A D . Metric regularity - a survey, Part 1 Theory. J Aust Math Soc, 2016, 101 (2): 188- 243
doi: 10.1017/S1446788715000701 |
14 |
Ioffe A D . Metric regularity - a survey, Part 2 Applications. J Aust Math Soc, 2016, 101 (3): 376- 417
doi: 10.1017/S1446788715000695 |
15 | Cibulka R , Dontchev A L , Preininger J , Veliov V , Roubal T . Kantorovich-type theorems forgeneralized equations. J Convex Anal, 2018, 25 (2): 459- 486 |
16 | Dontchev A L . Local analysis of a Newton-type method based on partial linearization. Lect Appl Math, 1996, 32, 295- 306 |
17 |
Geoffroy M H , Piétrus A . A general iterative procedure for solving nonsmooth generalized equations. Comput Optim Appl, 2005, 31 (1): 57- 67
doi: 10.1007/s10589-005-1104-5 |
18 |
Cibulka R , Dontchev A L , Geoffroy M H . Inexact Newton methods and Dennis-Mor'e theorems for nonsmooth generalized equations. SIAM J Control Optim, 2015, 53 (2): 1003- 1019
doi: 10.1137/140969476 |
19 | Dontchev A L , Rockafellar R T . Convergence of inexact Newton methods for generalized equations. Math Program Ser B, 2013, 139 (1): 115- 137 |
20 |
Cibulka R , Fabian M , Kruger A Y . On semiregularity of mappings. J Math Anal Appl, 2019, 473 (2): 811- 836
doi: 10.1016/j.jmaa.2018.12.071 |
21 | Dontchev A L , Lewis A S , Rockafellar R T . The radius of metric regularity. Trans Amer Math Soc, 2003, 335 (2): 493- 517 |
22 | Dontchev A L . The Graves theorem revisited. J Convex Anal, 1996, 3 (1): 45- 53 |
23 |
Dontchev A L . A proof of the Lyusternik-Graves theorem. Optimization, 2015, 64 (1): 41- 48
doi: 10.1080/02331934.2014.926359 |
24 | Dontchev A L , Frankowska H . Lyusternik-Graves theorem and fixed points. Proc Amer Math Soc, 2010, 139 (2): 521- 534 |
25 |
Dontchev A L , Lewis A S . Perturbations and metric regularity. Set-Valued Anal, 2005, 13 (4): 417- 438
doi: 10.1007/s11228-005-4404-0 |
26 |
He Y R , Ng K F . Stability of p-order metric regularity. Vietnam J Math, 2018, 46 (2): 285- 291
doi: 10.1007/s10013-018-0281-3 |
27 |
Páles Z . Inverse and implicit function theorems for nonsmooth maps in Banach spaces. J Math Anal Appl, 1997, 209 (1): 202- 220
doi: 10.1006/jmaa.1997.5358 |
[1] | Ning Zhang,Jinkui Liu. Spectral LS-type Projection Algorithm for Solving Nonlinear Pseudo-Monotone Equations [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1886-1897. |
[2] | Yajun Xie,Changfeng Ma. Algorithm with Order m + 1 Convergence for Weakly Nonlinear Complementarity Problems Derived From the Discretization of Free Boundary Problems [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1506-1516. |
[3] | Yuan Huang,Yue Zhi,Tong Kang,Ran Wang,Hong Zhang. Fully Discrete Finite Element Scheme for a Nonlinear Induction Heating Problem [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1238-1255. |
[4] | Tingwei Pan,Suxiang He. The Greedy Simplex Algorithm for Double Sparsity Constrained Optimization Problems [J]. Acta mathematica scientia,Series A, 2022, 42(3): 920-933. |
[5] | Yingqiu LI, Xulan HUANG, Zhaohui PENG. CENTRAL LIMIT THEOREM AND CONVERGENCE RATES FOR A SUPERCRITICAL BRANCHING PROCESS WITH IMMIGRATION IN A RANDOM ENVIRONMENT [J]. Acta mathematica scientia,Series A, 2022, 42(3): 957-974. |
[6] | Changfeng Ma,Feiyang Ma. The Improved Convergence Theorems of Modulus-Based Matrix Splitting Iteration Methods for a Class of Nonlinear Complementarity Problems with H-Matrices [J]. Acta mathematica scientia,Series A, 2022, 42(2): 583-593. |
[7] | Gonglin Yuan,Yulun Wu,Hongtruong Pham. A Modified HS-DY-Type Method with Nonmonotone Line Search for Image Restoration and Unconstrained Optimization Problems [J]. Acta mathematica scientia,Series A, 2022, 42(2): 605-620. |
[8] | Hongwu Zhang. One Regularization Method for a Cauchy Problem of Semilinear Elliptic Equation [J]. Acta mathematica scientia,Series A, 2022, 42(1): 45-57. |
[9] | Jing Zeng,Ruiting Hu. Stability of Benson Proper Efficient Solutions for Vector Optimization Problems [J]. Acta mathematica scientia,Series A, 2022, 42(1): 35-44. |
[10] | Yuehong He,Xianjun Long. A Inertial Contraction and Projection Algorithm for Pseudomonotone Variational Inequality Problems [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1897-1911. |
[11] | Zhibin Zhu,Yuanhang Geng. A Modified Three-Term WYL Conjugate Gradient Method [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1871-1879. |
[12] | Xiaoxia Yang,Houchao Zhang. Discontinuous Galerkin Finite Element Analysis of for the Extended Fisher-Kolmogorov Equation [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1880-1896. |
[13] | Haiyun Deng,Hui Liu,Wenjing Song. Finite Difference Scheme for the Nonhomogeneous Initial Boundary Value Problem of Critical Schrödinger Map [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1311-1322. |
[14] | Yiyuan Cheng,Xingxing Zha,Yongquan Zhang. On Stochastic Accelerated Gradient with Convergence Rate of Regression Learning [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1574-1584. |
[15] | Huaxin Chen,Wensheng Jia. Approximation Theorem and General Convergence of Population Games [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1566-1573. |
|