Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (5): 1517-1536.
Previous Articles Next Articles
Received:
2021-12-06
Online:
2022-10-26
Published:
2022-09-30
Contact:
Jianwen Peng
E-mail:1318286263@qq.com;jwpeng6@aliyun.com
Supported by:
CLC Number:
Liping Liu,Jianwen Peng. Modified Subgradient Extragradient Algorithms for Solving Common Elements of Variational Inequality and Fixed Point Problems[J].Acta mathematica scientia,Series A, 2022, 42(5): 1517-1536.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Aubin J P , Ekeland I . Applied Nonlinear Analysis. New York: Wiley, 1984 |
2 |
Karamardian S . Complementarity problems over cones with monotone and pseudomonotone maps. J Optim Theory Appl, 1976, 18, 445- 454
doi: 10.1007/BF00932654 |
3 | Kinderlehrer D , Stampacchia G . An Introduction to Variational Inequalities and Their Applications. New York: Academic Press, 1980 |
4 | Baiocchi C , Capelo A . Variational and Quasivariational Inequalities Applications to Free Boundary Problems. New York: Wiley, 1984 |
5 | Konnov I V . Combined Relaxation Methods for Variational Inequalities. Berlin: Springer, 2001 |
6 | Sibony M . Methodes iteratives pour les equations et inequations aux derivees partielles non lineares de type monotone. Calcolo, 1970, 7 (1): 65- 183 |
7 | Korpelevich G M . The extragradient method for finding saddle points and other problems. Matecon, 1976, 12, 747- 756 |
8 |
Cai G , Bu S Q . Modified extragradient methods for variational inequality problems and fixed point problems for an infinite family of nonexpansive mappings in Banach spaces. J Global Optim, 2013, 55 (2): 437- 457
doi: 10.1007/s10898-012-9883-6 |
9 |
Cai G , Gibali A , Iyiola O S , Shehu Y . A new double-projection method for solving variational inequalities in Banach spaces. J Optim Theory Appl, 2018, 178, 219- 239
doi: 10.1007/s10957-018-1228-2 |
10 |
Iusem A N , Nasri M . Korpelevich's method for variational inequality problems in Banach spaces. J Global Optim, 2011, 50, 59- 76
doi: 10.1007/s10898-010-9613-x |
11 |
Yao Y H , Noor M A , Noor K I , Liou Y C , Yaqoob H . Modified extragradient methods for a system of variational inequalities in Banach spaces. Acta Appl Math, 2010, 110, 1211- 1224
doi: 10.1007/s10440-009-9502-9 |
12 | Shehu Y . Single projection algorithm for variational inequalities in Banach spaces with application to contact problem. Acta Math Sci, 2020, 40B (4): 1045- 1063 |
13 | Popov L D . A modification of the Arrow-Hurwicz method for the search of saddle points. Mathematical notes of the Academy of Sciences of the USSR, 1980, 28, 845- 848 |
14 |
Censor Y , Gibali A , Reich S . The subgradient extragradient method for solving variational inequalities in Hilbert space. J Optim Theory Appl, 2011, 148, 318- 335
doi: 10.1007/s10957-010-9757-3 |
15 | Ceng L C , Yao J C . Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems. Taiwan J Math, 2006, 10 (5): 1293- 1303 |
16 |
Ceng L C , Hadjisavvas N , Wong N C . Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems. J Global Optim, 2010, 46, 635- 646
doi: 10.1007/s10898-009-9454-7 |
17 |
Iiduka H , Takahashi W . Strong convergence theorems for nonexpansive mappings and inverse strongly monotone mappings. Nonlinear Anal, 2005, 61 (3): 341- 350
doi: 10.1016/j.na.2003.07.023 |
18 |
Thong D V , Hieu D V . Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems. Numer Algor, 2019, 80, 1283- 1307
doi: 10.1007/s11075-018-0527-x |
19 |
Cai G , Dong Q L , Peng Y . Strong convergence theorems for solving variational inequality problems with pseudo-monotone and non-Lipschitz operators. J Optim Theory Appl, 2021, 188, 447- 472
doi: 10.1007/s10957-020-01792-w |
20 |
Yang H , Agarwal R P , Nashine H K , Liang Y . Fixed point theorems in partially ordered Banach spaces with applications to nonlinear fractional evolution equations. J Fixed Point Theory Appl, 2017, 19, 1661- 1678
doi: 10.1007/s11784-016-0316-x |
21 |
Takahashi W , Toyoda M . Weak convergence theorems for nonexpansive mappings and monotone mappings. J Optim Theory Appl, 2003, 118, 417- 428
doi: 10.1023/A:1025407607560 |
22 |
Nadezhkina N , Takahashi W . Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J Optim Theory Appl, 2006, 128, 191- 201
doi: 10.1007/s10957-005-7564-z |
23 | Diaz J B , Metcalf F T . Subsequential limit points of successive approximations. Trans Amer Math Soc, 1969, 135, 459- 485 |
24 |
Thong D V , Li X H , Dong Q L , Cho Y J , Rassias T M . An inertial Popov's method for solving pseudomonotone variational inequalities. Optim Lett, 2021, 15, 757- 777
doi: 10.1007/s11590-020-01599-8 |
25 |
Bot R I , Csetnek E R . An inertial Tseng's type proximal algorithm for nonsmooth and nonconvex optimization problems. J Optim Theory Appl, 2016, 171, 600- 616
doi: 10.1007/s10957-015-0730-z |
26 |
贺月红, 龙宪军. 求解伪单调变分不等式问题的惯性收缩投影算法. 数学物理学报, 2021, 41A (6): 1897- 1911
doi: 10.3969/j.issn.1003-3998.2021.06.026 |
He Y H , Long X J . An inertial contraction and projection algorithm for pseudomonotone variational inequality problems. Acta Math Sci, 2021, 41A (6): 1897- 1911
doi: 10.3969/j.issn.1003-3998.2021.06.026 |
|
27 |
Dong Q L , Yuan H B , Cho Y J , Rassias T M . Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings. Optim Lett, 2018, 12, 87- 102
doi: 10.1007/s11590-016-1102-9 |
28 |
Thong D V , Hieu D V . An inertial method for solving split common fixed point problems. J Fixed Point Theory Appl, 2017, 19, 3029- 3051
doi: 10.1007/s11784-017-0464-7 |
29 | Goebel K , Reich S . Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. New York: Marcel Dekker, 1984 |
30 |
Cottle R W , Yao J C . Pseudo-monotone complementarity problems in Hilbert space. J Optim Theory Appl, 1992, 75, 281- 295
doi: 10.1007/BF00941468 |
31 |
Xu H K . Iterative algorithm for nonlinear operators. Journal of the London Mathematical Society, 2002, 66 (1): 240- 256
doi: 10.1112/S0024610702003332 |
32 |
Mainge P E . The viscosity approximation process for quasi-nonexpansive mapping in Hilbert space. Computers and Mathematics with Applications, 2010, 59, 74- 79
doi: 10.1016/j.camwa.2009.09.003 |
33 |
Denisov S V , Semenov V V , Chabak L M . Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators. Cybern Syst Anal, 2015, 51, 757- 765
doi: 10.1007/s10559-015-9768-z |
34 |
Iusem A N , Otero R G . Inexact versions of proximal point and augmented Lagrangian algorithms in Banach spaces. Numer Funct Anal Optim, 2001, 22, 609- 640
doi: 10.1081/NFA-100105310 |
35 |
Yang J . Self-adaptive inertial subgradient extragradient algorithm for solving pseudomonotone variational inequalities. Applicable Analysis, 2021, 100 (5): 1067- 1078
doi: 10.1080/00036811.2019.1634257 |
36 | Harker P T , Pang J S . A damped-Newton method for the linear complementarity problem. Lect Appl Math, 1990, 26, 265- 284 |
37 |
Solodov M V , Svaiter B F . A new projection method for variational inequality problems. SIAM J Control Optim, 1999, 37 (3): 765- 776
doi: 10.1137/S0363012997317475 |
|