Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (5): 1473-1481.
Previous Articles Next Articles
Received:
2021-12-16
Online:
2022-10-26
Published:
2022-09-30
Contact:
Xiaoli Chen
E-mail:chen@163.com;yqwanjxnu@163.com
Supported by:
CLC Number:
Yaqi Wan,Xiaoli Chen. Regularity Criterion for 3D Incompressible Navier-Stokes Equations via the Pressure in Triebel-Lizorkin Spaces[J].Acta mathematica scientia,Series A, 2022, 42(5): 1473-1481.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Bae H O , Choe H J . A regularity criterion for the Navier-Stokes equations. Commun Partial Differential Equations, 2007, 32, 1173- 1187
doi: 10.1080/03605300701257500 |
2 | Bahouri H , Chemin J Y , Danchin R . Fourier Analysis and Nonlinear Partial Differential Equations. Heidelberg: Springer Berlin, 2011 |
3 | Beiráo da Veiga H . A new regularity class for the Navier-Stokes equations in $\mathbb{R}^n$. Chinese Annals of Mathematics, 1995, 16, 407- 412 |
4 |
Berselli L C , Galdi G P . Regularity criterion involving the pressure for the weak solutions to the Navier-Stokes equations. Proc Amer Math Soc, 2002, 130, 3585- 3595
doi: 10.1090/S0002-9939-02-06697-2 |
5 |
Chae D , Lee J . Regularity criterion in terms of pressure for the Navier-Stokes equations. Nonlinear Anal TMA, 2001, 46, 727- 735
doi: 10.1016/S0362-546X(00)00163-2 |
6 |
Chemin J Y , Zhang P . On the critical one component regularity for 3D Navier-Stokes system. Ann Sci Ec Norm Supér, 2016, 49, 131- 167
doi: 10.24033/asens.2278 |
7 |
Chemin J Y , Zhang P , Zhang Z . On the critical one component regularity for 3D Navier-Stokes system: General case. Arch Ration Mech Anal, 2017, 224, 871- 905
doi: 10.1007/s00205-017-1089-0 |
8 | Chen Q , Zhang Z . Regularity criterion via the pressure on weak solutions to the 3D Navier-Stokes equations. Proc Amer Math Soc, 2007, 135, 1829- 1837 |
9 |
Fang D , Qian C . The regularity criterion for 3D Navier-Stokes equations involving one velocity gradient component. Nonlinear Anal, 2013, 78, 86- 103
doi: 10.1016/j.na.2012.09.019 |
10 |
Giga Y . Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system. J Differentia Equations, 1986, 62, 186- 212
doi: 10.1016/0022-0396(86)90096-3 |
11 | Hopf E . Ueber die anfangswertaufgbe für die hydrodynamischen grundgleichungen. Math Nachr, 1951, 4, 213- 231 |
12 |
Leray J . Sur le mouvement dún liquids visqeux emplissant léspace. Acta Math, 1934, 63, 193- 248
doi: 10.1007/BF02547354 |
13 |
Qian C . A generalized regularity criterion for 3D Navier-Stokes equations in terms of one velocity component. J Differential Equations, 2016, 260, 3477- 3494
doi: 10.1016/j.jde.2015.10.037 |
14 |
Serrin J . On the interior regularity of weak solutions of the Navier-Stokes equations. Arch Rational Mech Anal, 1962, 9, 187- 195
doi: 10.1007/BF00253344 |
15 | Stein E M . Singular Integrals and Differentiability Properties of Functions. Princeton NJ: Princeton University Press, 1971 |
16 | Zhou Y . On the regularity criteria in terms of pressure of the Navier-Stokes equations in $\mathbb{R}^3$. Proc Amer Math Soc, 2006, 134, 149- 156 |
|