Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (5): 1462-1472.
Previous Articles Next Articles
Received:
2021-03-26
Online:
2022-10-26
Published:
2022-09-30
Supported by:
CLC Number:
Xuelei Wang. Large Multiple Periodic Solutions for the 1-Dimensional Sub-Linear p-Laplacian Equation[J].Acta mathematica scientia,Series A, 2022, 42(5): 1462-1472.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Manásevich R , Zanolin F . Time mapping and multiplicity of solutions for the one-dimensional p-Laplacian. Nonlinear Analysis TMA, 1993, 21, 269- 291
doi: 10.1016/0362-546X(93)90020-S |
2 |
Del Pino M A , Manásevich R . Infinitely many 2π-periodic solutions for a problem arising in nonlinear elasticity. J.Differential Equations, 1993, 103, 260- 277
doi: 10.1006/jdeq.1993.1050 |
3 |
Amster P , Napoli P . Landesman-Lazer type conditions for a system of p-Laplacian like operators. J Math Anal Appl, 2007, 326, 1236- 1243
doi: 10.1016/j.jmaa.2006.04.001 |
4 | Del Pino M A , Manásevich R . Multiple solutions for the p-Laplacian under global nonresonance. Proc Amer Math Soc, 1991, 112, 131- 138 |
5 |
Del Pino M A , Drábek P , Manásevich R . The Fredholm alternative at the first eigen-value for the one-dimensional p-Laplacian. J Differential Equations, 1999, 151, 386- 419
doi: 10.1006/jdeq.1998.3506 |
6 |
Del Pino M A , Manásevich R , Elgueta M . A homotopic deformation along p of a Leray-Schauder degree results and existence for $(|u|^{p-2}u')'+f(t, u)=0, u(0)=u(1)=0, p>1.$. J Differential Equations, 1989, 80, 1- 13
doi: 10.1016/0022-0396(89)90093-4 |
7 |
Drábek P , Takac P . A counterexample to the Fredholm alternative for the p-Laplacian. Proc Amer Math Soc, 1999, 127, 1079- 1087
doi: 10.1090/S0002-9939-99-05195-3 |
8 | Drábek P , Robinson S B . Resonance problems for the the one-dimensional p-Laplacian. Proc Amer Math Soc, 2000, 128, 755- 765 |
9 |
Manásevich R , Zanolin F . Time mapping and multiplicity of solutions for the one-dimensional p-Laplacian. Nonlinear Analysis TMA, 1992, 18, 79- 92
doi: 10.1016/0362-546X(92)90048-J |
10 |
Zhang M . Nonuniform nonresonance of semilinear differential equations. J Differential Equations, 2000, 166, 33- 50
doi: 10.1006/jdeq.2000.3798 |
11 |
Xiong M , Wu S , Liu J . Periodic solutions for the 1-dismensional p-Laplacian equation. J Math Anal Appl, 2007, 325, 879- 888
doi: 10.1016/j.jmaa.2006.02.027 |
12 |
Chu K D , Hai D D . Positive solutions for the one-dimensional singular superlinear p-laplacian problem. Communications on Pure and Applied Analysis, 2020, 19 (1): 241- 252
doi: 10.3934/cpaa.2020013 |
13 |
Jacobowitz H . Periodic solutions of $x''+f(x, t)=0$ via the Poincaré -Birkhoff theorem. J Differential Equations, 1976, 20, 37- 52
doi: 10.1016/0022-0396(76)90094-2 |
14 | 相福香. 一维p-次线性Laplacian方程的无穷多次调和解. 硕士学位论文. 苏州: 苏州大学, 2009 |
Xiang F X. Infinitely Mang Subharmonic Solutions for One-dimensional p-sublinear Laplacian Equations. Master's Degree Thesis. Suzhou: Soochow University, 2009 | |
15 | Hale J. Ordinary Differential Equations. Mineola New York: Dover Publications, INC, 2009 |
16 | 丁同仁. 常微分方程定性方法的应用. 北京: 高等教育出版社, 2004, |
Ding T . Applications of Qualitative Methods of Ordinary Differential Equations. Beijing: Higher Education Press, 2004, |
[1] | Nan Deng,Meiqiang Feng. Positive Doubly Periodic Solutions To Telegraph Equations: Existence, Uniqueness, Multiplicity and Asymptotic Behavior [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1360-1380. |
[2] | Shaowen Yao,Wenjie Li,Zhibo Cheng. Nondegeneracy and Uniqueness of Periodic Solution for Third-Order Nonlinear Differential Equations [J]. Acta mathematica scientia,Series A, 2022, 42(2): 454-462. |
[3] | Jun Lan. Existence and Multiplicity of Anti-Periodic Solutions for a Class of Second Order Duffing Equation [J]. Acta mathematica scientia,Series A, 2022, 42(2): 463-469. |
[4] | Chenyang Xia,Zhenhui Wang,Zhibo Cheng. Positive Periodic Solutions for a Damped Duffing Equation with Singularity of Attractive Type [J]. Acta mathematica scientia,Series A, 2022, 42(1): 131-138. |
[5] | Changyou Wang,Nan Li,Tao Jiang,Qiang Yang. On a Nonlinear Non-Autonomous Ratio-Dependent Food Chain Model with Delays and Feedback Controls [J]. Acta mathematica scientia,Series A, 2022, 42(1): 245-268. |
[6] | Jing Yang,Changcheng Ke,Zhouchao Wei. Study on Periodic Solutions of a Class of Continuous and Discontinuous Piece-Wise Linear Systems [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1053-1065. |
[7] | Qingye Zhang,Bin Xu. Multiple Periodic Solutions for a Class of Stationary Dirac Equations with Local Nonlinearity [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1013-1023. |
[8] | Shiping Lu,Shile Zhou,Xingchen Yu. Periodic Solutions for a Singular Liénard Equation with Sign-Changing Weight Functions [J]. Acta mathematica scientia,Series A, 2021, 41(3): 686-701. |
[9] | Tingting Jiang,Zengji Du. Periodic Solutions of a Neutral Impulsive Predator-Prey Model with Holling-Type IV Functional Response [J]. Acta mathematica scientia,Series A, 2021, 41(1): 178-193. |
[10] | Zhongwei Cao,Xiangdan Wen,Wei Feng,Li Zu. Dynamics of a Nonautonomous SIRI Epidemic Model with Random Perturbations [J]. Acta mathematica scientia,Series A, 2020, 40(1): 221-233. |
[11] | Chao Yang,Runjie Li. Existence and Stability of Periodic Solution for a Lasota-Wazewska Model with Discontinuous Harvesting [J]. Acta mathematica scientia,Series A, 2019, 39(4): 785-796. |
[12] | Chao Wang. Periodic Solutions of a Class of Nonlinear Hill's Type Equations with Bounded Restoring Force [J]. Acta mathematica scientia,Series A, 2019, 39(4): 761-772. |
[13] | Changqing Tong,Jing Zheng. Periodic Solutions of a Semi-Linear Klein-Gordon Equations with High Frequencies [J]. Acta mathematica scientia,Series A, 2019, 39(3): 484-500. |
[14] | Zhibo Cheng,Zhonghua Bi,Shaowen Yao. Periodic Solution for p-Laplacian Liénard Equation with Attractive Singularity and Time-Dependent Deviating Argument [J]. Acta mathematica scientia,Series A, 2019, 39(2): 277-285. |
[15] | Guijie Lan,Yingjie Fu,Chunjin Wei,Shuwen Zhang. Stationary Distribution and Periodic Solution for Stochastic Predator-Prey Systems with Holling-Type Ⅲ Functional Response [J]. Acta mathematica scientia,Series A, 2018, 38(5): 984-1000. |
|