Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (4): 1209-1226.
Previous Articles Next Articles
Received:
2021-01-27
Online:
2022-08-26
Published:
2022-08-08
Contact:
Hongyong Zhao
E-mail:kwang@nuaa.edu.cn;hyzho1967@126.com
Supported by:
CLC Number:
Kai Wang,Hongyong Zhao. Traveling Wave of a Reaction-Diffusion Dengue Epidemic Model with Time Delays[J].Acta mathematica scientia,Series A, 2022, 42(4): 1209-1226.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Bhatt S , Gething P W , Brady O J , et al. The global distribution and burden of dengue. Nature, 2013, 496: 504- 507
doi: 10.1038/nature12060 |
2 |
Brady O J , Gething P W , Bhatt S , et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Neglected Tropical Disease, 2012, 6: e1760
doi: 10.1371/journal.pntd.0001760 |
3 |
Zhang L , Wang S M . A time-periodic and reaction-diffusion Dengue fever model with extrinsic incubation period and crowding effects. Nonlinear Anal RWA, 2020, 51: 102988
doi: 10.1016/j.nonrwa.2019.102988 |
4 | Becker N, Petric D, Zgomba M, et al. Mosquitoes and Their Control (Second Edition). New York: Springer-Verlag, 2010 |
5 |
Esteva L , Vargas C . Analysis of a dengue disease transmission model. Math Biosci, 1998, 150: 131- 151
doi: 10.1016/S0025-5564(98)10003-2 |
6 |
Lou Y , Zhao X-Q . A reaction-diffusion malaria model with incubation period in the vector population. J Math Boil, 2011, 62: 543- 568
doi: 10.1007/s00285-010-0346-8 |
7 |
Wang J L , Chen Y M . Threshold dynamics of a vector-borne disease model with spatial structure and vector-bias. Appl Math Lett, 2020, 100: 106052
doi: 10.1016/j.aml.2019.106052 |
8 |
Wang W , Zhao X-Q . A nonlocal and time-delayed reaction-diffusion model of dengue transmission. SIAM J Appl Math, 2011, 71: 147- 168
doi: 10.1137/090775890 |
9 |
Wu R , Zhao X-Q . A reaction-diffusion model of vector-borne disease with periodic delays. J Nonlinear Sci, 2019, 29: 29- 64
doi: 10.1007/s00332-018-9475-9 |
10 | Ruan S. Spatial-Temporal Dynamics in Nonlocal Epidemiological Models, in: Mathematics for Life Science and Medicine. Berlin: Springer, 2007: 97–122 |
11 |
Berestycki H , Hamel F . Front propagation in periodic excitable media. Commun Pure Appl Math, 2002, 55: 949- 1032
doi: 10.1002/cpa.3022 |
12 |
Ducrot A , Magal P , Ruan S . Travelling wave solutions in mltigroup age-structured epidemic models. Arch Rational Mech Anal, 2010, 195: 311- 331
doi: 10.1007/s00205-008-0203-8 |
13 | Huang W Z . A geometric approach in the study of traveling waves for some classes of non-monotone reaction-diffusion systems. J Differential Equations, 2017, 260: 2190- 2224 |
14 |
邓栋, 李燕. 一类带治疗项的非局部扩散SIR传染病模型的行波解. 数学物理学报, 2020, 40A (1): 72- 102
doi: 10.3969/j.issn.1003-3998.2020.01.008 |
Deng D , Li Y . Traveling waves in a nonlocal dispersal SIR epidemic model with treatment. Acta Math Sci, 2020, 40A (1): 72- 102
doi: 10.3969/j.issn.1003-3998.2020.01.008 |
|
15 |
Wang Z-C , Li W-T , Ruan S . Travelling wave fronts in reaction- diffusion systems with spatio-temporal delays. J Differential Equations, 2006, 222: 185- 232
doi: 10.1016/j.jde.2005.08.010 |
16 |
Zhang T . Minimal wave speed for a class of non-cooperative reaction-diffusion systems of three equations. J Differential Equations, 2017, 262: 4724- 4770
doi: 10.1016/j.jde.2016.12.017 |
17 |
Zhang T , Wang W , Wang K . Minimal wave speed for a class of non-cooperative diffusion-reaction system. J Differential Equations, 2016, 260: 2763- 2791
doi: 10.1016/j.jde.2015.10.017 |
18 |
Zhao L , Wang Z-C , Ruan S . Traveling wave solutions in a two-group epidemic model with latent period. Nonlinearity, 2017, 30: 1287- 1325
doi: 10.1088/1361-6544/aa59ae |
19 |
邹霞, 吴事良. 一类具有非线性发生率与时滞的非局部SIR模型的行波解. 数学物理学报, 2018, 38A (3): 496- 513
doi: 10.3969/j.issn.1003-3998.2018.03.008 |
Zou X , Wu S L . Traveling waves in a nonlocal dispersal SIR epidemic model with delay and nonlinear incidence. Acta Math Sci, 2018, 38A (3): 496- 513
doi: 10.3969/j.issn.1003-3998.2018.03.008 |
|
20 | Zhao L , Zhang L , Huo H . Traveling wave solutions of a diffusive SEIR epidemic model with nonlinear incidence rate. Taiwanese J Math, 2019, 23: 951- 980 |
21 |
Wang W , Zhao X-Q . Basic reproduction numbers for reaction-diffusion epidemic models. SIAM J Appl Dyn Syst, 2012, 11: 1652- 1673
doi: 10.1137/120872942 |
22 |
Zhao X-Q . Basic reproduction ratios for periodic compartmental models with time delay. J Dyn Differ Equ, 2017, 29: 67- 82
doi: 10.1007/s10884-015-9425-2 |
23 |
van den Driessche P , Watmough J . Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci, 2002, 180: 29- 48
doi: 10.1016/S0025-5564(02)00108-6 |
24 |
Hsu C-H , Yang T-S . Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models. Nonlinearity, 2013, 26: 121- 139
doi: 10.1088/0951-7715/26/1/121 |
25 |
Tian B , Yuan R . Traveling waves for a diffusive SEIR epidemic model with non-local reaction. Appl Math Model, 2017, 50: 432- 449
doi: 10.1016/j.apm.2017.05.040 |
26 |
Ma S W . Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem. J Differential Equations, 2001, 171: 294- 314
doi: 10.1006/jdeq.2000.3846 |
27 | Zeidler E. Nonlinear Functional Analysis and its Applications I. New York: Springer, 1986 |
28 |
Denu D , Ngoma S , Salako R B . Existence of traveling wave solutions of a deterministic vector-host epidemic model with direct transmission. J Math Anal Appl, 2020, 487: 123995
doi: 10.1016/j.jmaa.2020.123995 |
29 | Wang Z-C , Wu J-H . Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission. Proc R Soc Lond Ser A Math Phys Eng Sci, 2010, 466: 237- 261 |
[1] | Ying Liu,Jianfang Gao. Oscillation Analysis of a Kind of Systems with Piecewise Continuous Arguments [J]. Acta mathematica scientia,Series A, 2022, 42(3): 826-838. |
[2] | Zerong He,Yimeng Dou,Mengjie Han. Optimal Boundary Control for a Hierarchical Size-Structured Population Model with Delay [J]. Acta mathematica scientia,Series A, 2022, 42(3): 867-880. |
[3] | Tailei Zhang,Junli Liu,Mengjie Han. Dynamics of an Anthrax Epidemiological Model with Time Delay and Seasonality [J]. Acta mathematica scientia,Series A, 2022, 42(3): 851-866. |
[4] | Hongmei Cheng,Rong Yuan. Forced Waves of a Delayed Reaction-Diffusion Equation with Nonlocal Diffusion Under Shifting Environment [J]. Acta mathematica scientia,Series A, 2022, 42(2): 491-501. |
[5] | Daoxiang Zhang,Ben Li,Dandan Chen,Yating Lin,Xinmei Wang. Hopf Bifurcation for a Fractional Differential-Algebraic Predator-Prey System with Time Delay and Economic Profit [J]. Acta mathematica scientia,Series A, 2022, 42(2): 570-582. |
[6] | Min Zhu,Mengli Liu. A Dengue Fever Model Incorporating Heterogeneous Cross-Diffusion [J]. Acta mathematica scientia,Series A, 2022, 42(1): 201-215. |
[7] | Kaixuan Zhu,Yongqin Xie,Xinyu Mei,Xijun Deng. Uniform Attractors for the Sup-Cubic Weakly Damped Wave Equations with Delays [J]. Acta mathematica scientia,Series A, 2022, 42(1): 86-102. |
[8] | Changyou Wang,Nan Li,Tao Jiang,Qiang Yang. On a Nonlinear Non-Autonomous Ratio-Dependent Food Chain Model with Delays and Feedback Controls [J]. Acta mathematica scientia,Series A, 2022, 42(1): 245-268. |
[9] | Yue Sun,Daoxiang Zhang,Wen Zhou. The Influence of Fear Effect on Stability Interval of Reaction-Diffusion Predator-Prey System with Time Delay [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1980-1992. |
[10] | Zaiyun Zhang,Zhenhai Liu,Youjun Deng. Global Existence and General Decay for a Nonlinear Viscoelastic Equation with Time-Varying Delay and Velocity-Dependent Material Density [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1684-1704. |
[11] | Zhiyu Zhang,Cheng Zhao,Yuyu Li. Oscillation of Second Order Delay Dynamic Equations with Superlinear Neutral Terms on Time Scales [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1838-1852. |
[12] | Dandan Sun,Yingke Li,Zhidong Teng,Tailei Zhang. Analysis of the Stability for Measles Epidemic Model with Age-Structured [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1950-1968. |
[13] | Guijiang Qin,Jiashan Yang. Oscillation Theorems of Second-Order Variable Delay Dynamic Equations with Quasilinear Neutral Term [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1492-1503. |
[14] | Jingnan Wang,Dezhong Yang. Stability and Bifurcation of a Pathogen-Immune Model with Delay and Diffusion Effects [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1204-1217. |
[15] | Lixiang Feng,Defen Wang. Global Stability of an Epidemic Model with Quarantine and Incomplete Treatment [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1235-1248. |
|