1 |
Bertini L , Cancrini N . The stochastic heat equation: Feynman-Kac formula and intermittency. J Stat Phys, 1995, 78 (5/6): 1377- 1401
|
2 |
Chen L , Dalang R C . Moments, intermittency and growth indices for the nonlinear fractional stochastic heat equation. Stoch PDE: Anal Comp, 2015, 3: 360- 397
doi: 10.1007/s40072-015-0054-x
|
3 |
Dawson D A , Fleischmann K . A super-Brownian motion with a single point catalyst. Stochastic Prosess Appl, 1994, 49 (1): 3- 40
doi: 10.1016/0304-4149(94)90110-4
|
4 |
Debbi L , Dozzi M . On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension. Stoch Proc Appl, 2005, 115: 1761- 1781
|
5 |
Debbi L . On some properties of a high order fractional differential operator which is not in general selfadjoint. Appl Math Sci, 2007, 1: 1325- 1339
|
6 |
Foondun M , Khoshnevisan D . Intermittence and nonlinear parabolic stochastic partial differential equations. Electron J Probab, 2009, 14 (21): 548- 568
|
7 |
Foondun M , Joseph M . Remarks on non-linear noise excitability of some stochastic equations. Stochastic Process Appl, 2014, 124 (10): 3429- 3440
doi: 10.1016/j.spa.2014.04.015
|
8 |
Foondun M , Liu W , Omaba M . Moment bounds for a class of fractional stochastic heat equation. Ann Probab, 2007, 45 (4): 2131- 2153
|
9 |
Khoshnevisan D. Analysis of Stochastic Partial Differential Equations. Providence, RI: American Mathematical Society, 2014
|
10 |
Khoshnevisan D , Kim K . Non-linear excitation of excitation of intermittent stochastic PDEs and the topology of LCA groups. Ann Probab, 2015, 43 (4): 1944- 1991
|
11 |
Konno N , Shiga T . Stochastic partial differential equations for some measure-valued diffusion. Probab Theory Related Fields, 1988, 79: 201- 225
doi: 10.1007/BF00320919
|
12 |
Liu J , Tudor C A . Stochastic heat equation with fractional Laplacian and fractional noise: existence of the solution and analysis of its density. Acta Mathematica Scientia, 2017, 37B (6): 1545- 1566
|
13 |
Liu J . Intermittency and stochastic pseudo-differential equation with spatially inhomogeneous white noise. Nonlinear Differ Equ Appl, 2019, 26 (1): 1- 32
doi: 10.1007/s00030-018-0548-0
|
14 |
Liu W , Tian K , Foondum M . On some properties of a class of fractional stochastic heat equations. J Theor Probab, 2017, 30: 1310- 1333
doi: 10.1007/s10959-016-0684-6
|
15 |
Neuman E . Pathwise uniqueness of the stochastic heat equation with spatially inhomogeneous white noise. Ann Probab, 2018, 46 (6): 3090- 3187
|
16 |
Walsh J B. An Introduction to Stochastic Partial Differential Equations//Carmona R, Kesten H, Walsh J, et al. Ecole d'été de Probabilités de Saint-Flour XIV. Berlin: Springer-Verlag, 1986, 1180: 266–439
|
17 |
Xie B . Intermittency for stochastic partial differential equations driven by strongly inhomogeneous space-time white noise. J Differential Equations, 2018, 264: 1050- 1079
doi: 10.1016/j.jde.2017.09.028
|
18 |
Zähle H . Heat equation with strongly inhomogeneous noise. Stochastic Process Appl, 2004, 112: 95- 118
doi: 10.1016/j.spa.2004.01.006
|
19 |
Zähle H . Space-time regularity of catalytic super-Brownian motion. Math Nachr, 2005, 278: 942- 970
doi: 10.1002/mana.200310284
|