Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (4): 1112-1121.
Previous Articles Next Articles
Received:
2021-03-22
Online:
2022-08-26
Published:
2022-08-08
Supported by:
CLC Number:
Yongda Wang. Existence Results for von Kármán Equations Modeling Suspension Bridges[J].Acta mathematica scientia,Series A, 2022, 42(4): 1112-1121.
1 | von Kármán T . Festigkeitsprobleme im maschinenbau. Encycl der Mathematischen Wissenschaften, Leipzig, 1910, 4: 348- 352 |
2 |
Berger M H . A new approach to the analysis of large deflections of plates. J Appl Mech, 1955, 22: 465- 472
doi: 10.1115/1.4011138 |
3 |
Berger M S . On von Kármán's equations and the buckling of a thin elastic plate, I: The clamped plate. Comm Pure Appl Math, 1967, 20: 687- 719
doi: 10.1002/cpa.3160200405 |
4 |
Ciarlet P G . A justification of the von Kármán equations. Arch Rat Mech Anal, 1980, 73: 349- 389
doi: 10.1007/BF00247674 |
5 |
Ferrero A , Gazzola F . A partially hinged rectangular plate as a model for suspension bridges. Disc Cont Dynam Syst A, 2015, 35: 5879- 5908
doi: 10.3934/dcds.2015.35.5879 |
6 | Gazzola F , Wang Y . Modeling suspension bridges through the von Kármán quasilinear plate equations. Progress in Nonlinear Differential Equations and Their Applications, 2015, 86: 269- 297 |
7 |
Wang Y . An evolution von Kármán equation modeling suspension bridges. Nonlin Anal, 2018, 169: 59- 78
doi: 10.1016/j.na.2017.12.002 |
8 | Rocard Y. Dynamic Instability: Automobiles, Aircraft, Suspension Bridges. London: Crosby Lockwood, 1957 |
9 | Al-Gwaiz G , Benci V , Gazzola F . Bending and stretching energies in a rectangular plate modeling suspension bridges. Nonlinear Anal TMA, 2014, 186: 18- 34 |
10 |
Arioli G , Gazzola F . Torsional instabilty in suspension bridges: the Tacoma Narrows Bridge case. Comm Nonlin Sci Numer Simul, 2017, 42: 342- 357
doi: 10.1016/j.cnsns.2016.05.028 |
11 | Tacoma Narrows Bridges collapse, http://www.youtube.com/watch?v=3mclp9QmCGs, 1940 |
12 | Chueshov I, Lasiecka I. Von Kármán Evolution Equations, Well-posedness and Long-Time Dynamics. New York: Springer-Verlag, 2010 |
13 | Ferreira V , Gazzola F , Moreira dos Santos E . Instability of modes in a partially hinged rectangular plate. J Diff Equa, 2016, 261: 6302- 6340 |
14 | Chang K C. Methods in Nonlinear Analysis. Berlin: Springer, 2005 |
[1] | Liu Shifang, Ma Qiaozhen. Existence of Strong Global Attractors for Damped Suspension Bridge Equations with History Memory [J]. Acta mathematica scientia,Series A, 2017, 37(4): 684-697. |
[2] | Liu Jiang, Zhu Lintao, Lin Zhigui. An SEI Epidemic Diffusive Model and Its Moving Front [J]. Acta mathematica scientia,Series A, 2015, 35(3): 604-617. |
[3] | ZHAO Wei-Xia. The Global Classical Solution to a Free Boundary Problem in the Peeling Phenomenon [J]. Acta mathematica scientia,Series A, 2013, 33(6): 1001-1012. |
[4] |
SONG Hong-Li, GUO Zhen-Hua.
Existence of Global Strong Solutions and Interface Behavior of Solutions for 1D Compressible Navier-Stokes Equations with Free Boundary Value Problem [J]. Acta mathematica scientia,Series A, 2013, 33(4): 601-620. |
[5] | ZHAO Wei-Xia. Study on a Free Boundary Value Problem Arising from Peeling Phenomenon [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1461-1469. |
[6] | WU Jun-De, CUI Shang-Bin. Existence and Uniqueness of Global Solutions for a Free Boundary Problem Modeling the Growth of Tumors under the Action of Drugs [J]. Acta mathematica scientia,Series A, 2010, 30(2): 305-319. |
[7] | TAO You-Shan, BIAN Bao-Jun. Parameter Identification for a Model of Tumor Growth in the Presence of Inhibitors [J]. Acta mathematica scientia,Series A, 2009, 29(5): 1175-1186. |
[8] |
Zhang Ting.
Discontinuous Solutions of the Navier-Stokes Equations for Compressible Flow with Density-Dependent Viscosity [J]. Acta mathematica scientia,Series A, 2008, 28(2): 214-221. |
[9] |
Jian Xiongfei;Yi Fahuai.
The Obstacle Problem for the Pricing of the Fixed Rate Mortgages [J]. Acta mathematica scientia,Series A, 2007, 27(6): 987-995. |
[10] | Wei Xuemei; Cui Shangbin. Asymptotic Behavior of Solutions for a Free Boundary Problem Modelling Tumor Growth [J]. Acta mathematica scientia,Series A, 2007, 27(4): 648-659. |
[11] | Tao Youshan. Mathematical Analysis of a Model of a Replication-competent Virus in Tumor Cells [J]. Acta mathematica scientia,Series A, 2006, 26(2): 183-199. |
[12] | Wei Xuemei, Cui Shangbin. Existence and Uniqueness of Global Solutions of a Free Boundary Problem Modeling Tumor Growth [J]. Acta mathematica scientia,Series A, 2006, 26(1): 1-008. |
[13] | SHEN Jian-Zhong, YI Fa-Huai. A Reaction Diffusion's Free Boundary Problem [J]. Acta mathematica scientia,Series A, 2003, 23(2): 183-192. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 395
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 126
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|