Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (4): 1018-1026.
Previous Articles Next Articles
Yunjie Tan1,2(),Xiaohui Han1,2(
),Jianping Dong1,2,*(
)
Received:
2021-03-10
Online:
2022-08-26
Published:
2022-08-08
Contact:
Jianping Dong
E-mail:tanyunjie@nuaa.edu.cn;hanxiaohui@nuaa.edu.cn;dongjianping@nuaa.edu.cn
Supported by:
CLC Number:
Yunjie Tan,Xiaohui Han,Jianping Dong. Two-Dimensional Infinite Square Well in Fractional Quantum Mechanics[J].Acta mathematica scientia,Series A, 2022, 42(4): 1018-1026.
1 |
Klafter J , Blumen A , Shlesinger M F . Stochastic pathway to anomalous diffusion. Physical Review A, 1987, 35: 3081- 3085
doi: 10.1103/PhysRevA.35.3081 |
2 | Zaslavsky G M . Fractional kinetic equation for Hamiltonian chaos. Phys Rev D, 1994, 76: 110- 122 |
3 |
Lim S C , Muniandy S V . On some possible generalizations of fractional Brownian motion. Phys Lett A, 2000, 266: 140- 145
doi: 10.1016/S0375-9601(00)00034-7 |
4 |
Lim S C . Fractional derivative quantum fields at positive temperature. Physics A, 2006, 363: 269- 281
doi: 10.1016/j.physa.2005.08.005 |
5 |
Laskin N . Fractional quantum mechanics and Lévy path integrals. Phys Lett A, 2000, 268: 298- 305
doi: 10.1016/S0375-9601(00)00201-2 |
6 |
Laskin N . Fractional quantum mechanics. Phys Rev E, 2000, 62: 3135- 3145
doi: 10.1103/PhysRevE.62.3135 |
7 |
Laskin N . Fractional Schrodinger equation. Phys Rev E, 2002, 66: 056108
doi: 10.1103/PhysRevE.66.056108 |
8 |
Naber M . Time fractional Schrodinger equation. J Math Phys, 2004, 45 (8): 3339- 3352
doi: 10.1063/1.1769611 |
9 |
Dong J , Xu M . Space-time fractional Schrödinger equation with time-independent potentials. J Math Anal Appl, 2008, 344 (2): 1005- 1017
doi: 10.1016/j.jmaa.2008.03.061 |
10 |
Dong J , Xu M . Some solutions to the space fractional Schrödinger equation using momentum representation method. J Math Phys, 2007, 48: 072105
doi: 10.1063/1.2749172 |
11 |
Oliveira E C D , Costa F S , Vaz J . The fractional Schrödinger for delta potentials. J Math Phys, 2010, 51 (12): 123517
doi: 10.1063/1.3525976 |
12 |
Muslih S I , Agrawal O P . Riesz fractional derivatives and fractional dimensional space. Int J Theor Phys, 2010, 49 (2): 270- 275
doi: 10.1007/s10773-009-0200-1 |
13 |
Muslih S I . Solutions of a particle with fractional ![]() doi: 10.1007/s10773-010-0396-0 |
14 |
Jiang X . Time-space fractional Schrodinger like equation with a nonlocal term. Eur Phys J Special Topics, 2011, 193: 61- 70
doi: 10.1140/epjst/e2011-01381-7 |
15 |
Zhang H , Jiang X , Fan W . Parameter estimation for the fractional Schrödinger equation using Bayesian method. J Math Phys, 2016, 57: 082104
doi: 10.1063/1.4960724 |
16 |
陆莹, 谭云杰, 董建平. 时空分数阶量子力学下的![]() doi: 10.3969/j.issn.1003-3998.2021.06.006 |
Lu Y , Tan Y J , Dong J P . ![]() ![]() ![]() ![]() ![]() doi: 10.3969/j.issn.1003-3998.2021.06.006 |
|
17 | Li Q , Wang W , Teng K , et al. Ground states for fractional Schrödinger equations with electromagnetic fields and critical growth. Acta Math Sci, 2020, 40B: 59- 74 |
18 |
He Q , Peng Y . Infinitely many solutions with peaks for a fractional system in ![]() ![]() |
19 |
Longhi S . Fractional Schrödinger equation in optics. Opt Lett, 2015, 40: 1117- 1120
doi: 10.1364/OL.40.001117 |
20 |
Zhang Y , Liu X , Beli M R , et al. Propagation dynamics of a light beam in a fractional Schrödinger equation. Phys Rev Lett, 2015, 115: 180403
doi: 10.1103/PhysRevLett.115.180403 |
21 |
Zang F , Wang Y , Li L . Dynamics of Gaussian beam modeled by fractional Schrödinger equation with a variable coefficient. Opt Express, 2018, 26 (18): 23740- 23750
doi: 10.1364/OE.26.023740 |
22 | Levin F S . An Introduction to Quantum Theory. Cambridge: Cambridge University Press, 2002 |
23 |
Jeng M , Xu S L Y , Hawkins E , et al. On the nonlocality of the fractional Schrödinger equation. J Math Phys, 2010, 51: 062102
doi: 10.1063/1.3430552 |
24 |
Dong J , Geng H . Lévy path integrals of particle on circle and some applications. J Math Phys, 2018, 59: 112103
doi: 10.1063/1.5018039 |
25 | Dong J. Lévy path integral approach to the solution of the fractional Schrödinger equation with infinite square well. 2013, arXiv: 1301.3009v1[math-ph] |
26 |
Grosche C . Path integrals for potential problems with ![]() |
27 |
卢森锴, 袁通全. 二维无限深方势阱中粒子运动的路径积分解法. 大学物理, 2009, 28 (7): 15- 17
doi: 10.3969/j.issn.1000-0712.2009.07.007 |
Lu S , Yuan T . Path integral solution of particle motion in two-dimensional infinite square potential well. Chinese College Physics, 2009, 28 (7): 15- 17
doi: 10.3969/j.issn.1000-0712.2009.07.007 |
|
28 |
Janke W , Kleinert H . Summing paths for a particle in a box. Lett Nuovo Cimento, 1979, 25: 297- 300
doi: 10.1007/BF02776259 |
29 |
Grosche C . Path integraton via summation of perturbaton expansions and applications to totally reflecting boundaries and potential steps. Phys Rev Lett, 1993, 71: 1- 4
doi: 10.1103/PhysRevLett.71.1 |
[1] | Ying Lu,Yunjie Tan,Jianping Dong. δ-Potential in Space-Time Fractional Quantum Mechanics [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1634-1642. |
[2] | Wenbo Wang,Quanqing Li. Existence and Concentration of Nontrivial Solutions for the Fractional Schrödinger Equations with Sign-Changing Steep Well Potential [J]. Acta mathematica scientia,Series A, 2018, 38(5): 893-902. |
[3] | Wu Kaisu| Yang Mingzhu(. Non-self-adjoin and non-compact abstract boundary value problem [J]. Acta mathematica scientia,Series A, 1999, 19(2): 224-232. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 152
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 163
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|