Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (4): 1027-1040.
Previous Articles Next Articles
Received:
2021-09-09
Online:
2022-08-26
Published:
2022-08-08
Contact:
Zhilin Pu
E-mail:407044728@qq.com;puzhilinscnu@163.com
CLC Number:
Xiangyu Xiao,Zhilin Pu. The Global Attractors of Cahn-Hilliard-Brinkman System[J].Acta mathematica scientia,Series A, 2022, 42(4): 1027-1040.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Brinkman H C . A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Applied Scientific Research, 1949, 1 (1): 727- 734 |
2 |
Eden A , Kalantarov V K . The convective Cahn-Hilliard equation. Applied Mathematics Letters, 2007, 20 (4): 455- 461
doi: 10.1016/j.aml.2006.05.014 |
3 |
Abels H . On a diffusive interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch Ration Mech Anal, 2009, 194 (2): 463- 506
doi: 10.1007/s00205-008-0160-2 |
4 |
Zhou Y , Fan J . The vanishing viscosity limit for a 2D Cahn-Hilliard-Navier-Stokes system with a slip boundary condition. Nonlinear Anal Real World Appl, 2013, 14 (2): 1130- 1134
doi: 10.1016/j.nonrwa.2012.09.003 |
5 |
Starovoitov V N . The dynamics of a two-component fluid in the presence of capillary forces. Math Notes, 1997, 62 (2): 244- 254
doi: 10.1007/BF02355911 |
6 | X Wang , H Wu . Long-time behavior for the Hele-Shaw-Cahn-Hilliard system. J Asymptot Anal, 2012, 78 (4): 217- 245 |
7 |
Jiang J , Wu H , Zheng S M . Well-posedness and long-time behavior of solutions for a non-autonomous Cahn-Hilliard-Darcy system with mass source modeling tumor growth. Differential Equations, 2015, 259 (7): 3032- 3077
doi: 10.1016/j.jde.2015.04.009 |
8 |
Feng X B , Wise S . Analysis of a Darcy-Cahn-Hilliard diffuse interface model for the Hele-Shaw flow and its fully discrete finite element approximation. SIAM J Numer Anal, 2012, 50 (3): 1320- 1343
doi: 10.1137/110827119 |
9 |
Luis C , Maria G , Nicola Z . Existence of weak solutions to a continuity equation with space time nonlocal Darcy law. Communications in Partial Differential Equations, 2020, 45 (12): 1799- 1819
doi: 10.1080/03605302.2020.1814325 |
10 | Cahn J W , Hilliard J E . Free energy of a nonuniform system I: Interfacial free energy. Chem Phys, 1958, 28 (2): 258- 267 |
11 | Elliott C M , Zheng S . On the Cahn-Hilliard equation. Arch Rational Mech Anal, 1986, 96 (8): 339- 357 |
12 | Liu C , Shen J . A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier spectral method. Phys D, 2003, 179 (3): 211- 228 |
13 |
Schmuck M , Pradas M , Pavliotis G A , Kalliadasis S . Derivation of effective macroscopic Stokes-Cahn-Hilliard equations for periodic immiscible flows in porous media. Nonlinearity, 2013, 26 (12): 3259- 3277
doi: 10.1088/0951-7715/26/12/3259 |
14 |
Zhong C K , Yang M H , Sun C Y . The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations. Differential Equations, 2006, 223 (2): 367- 399
doi: 10.1016/j.jde.2005.06.008 |
15 | Grinfeld M , Novick-Cohen A . The viscous Cahn-Hilliard equation: Morse decomposition and structure of the global attractor. Tran, 1999, 351 (6): 351- 356 |
16 |
Nicolaenko B , Scheurer B , Temam R . Some global dynamical properties of a class of pattern formation equations. Comm Partial Differential Equations, 1989, 14 (2): 245- 297
doi: 10.1080/03605308908820597 |
17 |
Bosia S , Conti M , Grasselli M . On the Cahn-Hilliard-Brinkman system. Commun Math Sci, 2015, 13 (6): 1541- 1567
doi: 10.4310/CMS.2015.v13.n6.a9 |
18 |
Li F , Zhong C K , You B . Finite-dimensional global attractor of the Cahn-Hilliard-Brinkman system. Journal of Mathematical Analysis and Applications, 2016, 434 (1): 599- 616
doi: 10.1016/j.jmaa.2015.09.026 |
19 | You B . Global attractor of the Cahn-Hilliard-Navier-Stokes system with moving contact lines. American Institute of Mathematical Sciences, 2019, 18 (5): 2283- 2298 |
20 |
Zhao X P , Liu C C . On the existence of global attractor for 3D viscous Cahn-Hilliard equation. Acta Appl Math, 2015, 138 (1): 199- 212
doi: 10.1007/s10440-014-9963-3 |
[1] | Tianling Gao,Li Xia,Mingjun Zhou,Yuanyuan Zhang. The Asymptotic Behavior of Total Variation Flow with the Non-Constant Data [J]. Acta mathematica scientia,Series A, 2022, 42(1): 157-164. |
[2] | Baishun Lai,Qing Luo. Well-Posedness of a Fourth Order Parabolic Equation Modeling MEMS [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1718-1733. |
[3] | Dandan Sun,Yingke Li,Zhidong Teng,Tailei Zhang. Analysis of the Stability for Measles Epidemic Model with Age-Structured [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1950-1968. |
[4] | Lihong Zhang,Zedong Yang,Guotao Wang,Dumitru Baleanu. Existence and Asymptotic Behavior of Solutions of a Class of k-Hessian Equation [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1357-1371. |
[5] | Jinguo Zhang,Dengyun Yang. Existence and Asymptotic Behavior of Solution for a Degenerate Elliptic Equation Involving Grushin-Type Operator and Critical Sobolev-Hardy Exponents [J]. Acta mathematica scientia,Series A, 2021, 41(4): 997-1012. |
[6] | Xuanxuan Xi,Mimi Hou,Xianfeng Zhou. Invariance Sets and Well-Posedness for the Weak Solution of Non-Autonomous Caputo Fractional Evolution Equation [J]. Acta mathematica scientia,Series A, 2021, 41(1): 149-165. |
[7] | Jie Wu,Hongxia Lin. The Global Solution and Asymptotic Behavior of Parabolic-Parabolic Keller-Segel Type Model [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1102-1114. |
[8] | Didi Hu,Xuan Wang. The Strong Time-Dependent Global Attractors for the Non-Damping Abstract Evolution Equations with Fading Memory [J]. Acta mathematica scientia,Series A, 2019, 39(1): 81-94. |
[9] | Xiaoming Peng,Xiaoxiao Zheng,Yadong Shang. Global Attractors for a Fourth Order Pseudo-Parabolic Equation with Fading Memory [J]. Acta mathematica scientia,Series A, 2019, 39(1): 114-124. |
[10] | Xuan Wang, Ying Han, Chenghua Gao. Global Attractor in H1(Rn) x Lu2(R+;H1(Rn)) for the Nonclassical Diffusion Equations with Fading Memory [J]. Acta mathematica scientia,Series A, 2018, 38(6): 1205-1223. |
[11] | Cai Gang. The Well-Posedness of Degenerate Differential Equations with Finite Delay in Banach Spaces [J]. Acta mathematica scientia,Series A, 2018, 38(2): 264-275. |
[12] | Zhang Mingshu, Zhu Zheqi, Zhao Caidi. Determining Modes and Determining Nodes to the Fluid Flow of Ladyzhenskaya Model [J]. Acta mathematica scientia,Series A, 2018, 38(1): 71-82. |
[13] | Wang Shenghua, Cheng Guofei. The Asymptotic Behavior of the Solution in Structured Bacterial Population Model [J]. Acta mathematica scientia,Series A, 2018, 38(1): 156-167. |
[14] | Meng Xiaoying. Analysis of a Stochastic Delayed Epidemic Model with a Non-Monotonic Incidence Rate [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1162-1175. |
[15] | Liu Shifang, Ma Qiaozhen. Existence of Strong Global Attractors for Damped Suspension Bridge Equations with History Memory [J]. Acta mathematica scientia,Series A, 2017, 37(4): 684-697. |
|